今天给大家分享一篇IF=7.3
的内质网应激的文章,2023年7月发表在Frontiers in Immunology:Comprehensive analysis of endoplasmic reticulum stress-associated genes signature of ulcerative colitis,溃疡性结肠炎内质网应激相关基因特征的综合分析
摘要
- 背景:内质网应激(
ERS
)是溃疡性结肠炎(UC
)发生的关键因素。然而,潜在的分子机制仍不清楚。本研究旨在确定 UC 发病机制中与 ERS 相关的关键分子机制,并为 UC 提供新的治疗靶点。 - 方法:从基因表达综合数据库(
GEO
)获取UC患者和健康对照者的结肠组织基因表达谱和临床信息,并从GeneCards下载ERS相关基因集进行分析。利用加权基因共表达网络分析 (WGCNA
) 和差异表达分析来识别与 UC 相关的关键模块和基因。使用共识聚类算法对 UC 患者进行分类。采用CIBERSORT算法来评估免疫细胞浸润。使用基因集变异分析(GSVA
)、基因本体论(GO
)和京都基因和基因组百科全书(KEGG
)来探索潜在的生物学机制。外部组用于验证和识别 ERS 相关基因与生物制剂的关系。使用连接图(CMap
)数据库预测小分子化合物。进行分子对接以模拟小分子化合物与关键靶标的结合构象。 - 结果:研究从UC患者和健康对照者的结肠粘膜中鉴定出915个差异表达基因(
DEGs
)和11个ERS相关基因(ERSRGs
),这些基因具有良好的诊断价值且高度相关。鉴定出五种潜在的共享微管蛋白抑制剂的小分子药物,包括阿苯达唑、芬苯达唑、氟苯达唑、灰黄霉素和诺斯卡品,其中诺斯卡品与靶点具有高结合亲和力,表现出最高的相关性。活动性UC和10个ERSRGs与大量免疫细胞相关,ERS还与活动性UC的结肠粘膜侵袭相关。在 ERS 相关亚型中观察到基因表达模式和免疫细胞浸润丰度存在显着差异。 - 结论:结果表明ERS在UC发病机制中起着至关重要的作用,诺斯卡平可能通过影响ERS而成为一种有前景的UC治疗药物。
结果
图 1与 UC 相关的 DEG 的鉴定。
- (A) UC 患者和健康对照者结肠粘膜中 DEG 的火山图。
- (B) UC 患者和健康对照之间 DEG 的表达谱。
- (C) DEG 的 GO 富集分析。
- (D) DEGs 的 KEGG 通路富集分析。DEG,差异表达基因;UC,溃疡性结肠炎;GO,基因本体;KEGG,京都基因和基因组分析百科全书。
图 2与 UC 相关的模块标识。
- (A)软阈值功率的无标度指数分析和各种软阈值功率的平均连通性分析。
- (B)基于相异性度量 (1-TOM) 的模块聚类树状图。
- (C)模块特征基因与 UC 之间相关性的热图。
- (D)蓝色模块中 UC 的 GS 与 MM 的散点图。TOM,拓扑重叠矩阵;GS,基因显着性;MM,模块相关性。
图 3 ERSRG 的识别。
- (A)维恩图显示了差异表达基因、ERG 和蓝色模块的基因之间的重叠基因。
- (B) Cytohubba-MCC 用于识别 ERSRG 蛋白质相互作用网络中的枢纽基因。
- (C) MCODE 子网络。
- (D)主调节器由 iRegulon 工具预测。粉色节点代表调节因子,目标基因以蓝色突出显示。
- (E)分割小提琴图揭示了 GSE87466 数据集中 UC 患者和健康对照之间 ERSRG 的表达差异。
- (F) ERSRG 的相关性。
- (G) GSE87466 数据集中 ERSRG 的 ROC 曲线。ERGs,内质网应激基因;ERSRGs,内质网应激相关基因;ROC,接收器工作特性。 p < 0.0001。
图4 药物筛选
- (A) CMap分析显示了基于小分子化合物的作用机制。
- (B–F)使用 PubChem 开放化学数据库预测的小分子药物 3D 结构,包括阿苯达唑(B)、芬苯达唑(C)、氟苯达唑(D)、灰黄霉素(E)和那可品(F)。
图5 分子对接
- 那斯卡品与CCL4 (A)、IL1B (B)、PTGS2 (C)、SELP (D)和MMP9 (E)复合的分子对接模式。
图 6 ERSRG 的外部验证(A、B)。
- (A)分割小提琴图揭示了 GSE206285 数据集中 UC 患者和健康对照之间 ERSRG 的表达差异。
- (B) GSE206285 数据集中 ERSRG 的 ROC 曲线。
- (C)分裂小提琴图揭示了非活动性和活动性 UC 患者之间 ERSRG 的表达差异。
- (D) GSE107499 数据集中活动性 UC 患者病变和非病变结肠组织中 ERSRG 的表达。
图 8 IFX 和 GLM 反应者通过调节 ERSRG 改善 UC 患者受损的结肠粘膜。
- (A–C) IFX 治疗前后健康对照、无反应组和反应组 UC 患者结肠粘膜中 ERSRG 的相对表达水平。
- (D-F) GLM 治疗前后健康对照、有反应组和无反应组 UC 患者结肠粘膜中 ERSRG 的相对表达水平。IFX、英夫利昔单抗;GLM,戈利木单抗。
图 9 治疗效果比较
- Ust 通过调节 ERSRG 减少 UC 患者受损的结肠粘膜(A, B)。
- HC(健康对照)、Ust_CR(Ust治疗前缓解的UC患者)、Ust_NR(Ust治疗前无反应的UC患者)和Ust_MH(Ust治疗前粘膜愈合的UC患者)结肠粘膜中ERSRGs的相对表达水平)。Ust,优特克单抗;CR,临床缓解;MH,粘膜愈合。 p < 0.01,* p < 0.001, p < 0.0001,ns,无统计学意义。
图10 ERS相关亚型的鉴定和富集分析。
- (A) k = 2 时的一致性聚类矩阵。
- (B) k=2 至 6 时的一致性 CDF 曲线。
- (C) CDF 增量面积曲线的相对变化。
- (D)当 k=2 至 6 时每个亚型的共识得分。
- (E, F) PCA 图分离了 subtype1(蓝色)和 sybtype2 样本(红色)。CDF,累积分布函数;PCA,主成分分析。
图11 ERS相关亚型之间特征基因差异的鉴定。
- (A, B)热图(A)和分割小提琴图(B)揭示了亚型之间 10 个特征基因的表达。
- (C,D)热图(C)和火山图(D)揭示了两种亚型之间的基因表达模式。
- (E, F) 1 型和 2 型 UC 患者接受 8 周 Ust 治疗后的粘膜愈合率(E)和临床反应(F) 。
图 12不同 ERS 相关亚型的免疫特征。
- (A, B)不同免疫微环境亚型之间丰富的生物功能(A)和标志通路(B)的差异,按 GSVA 评分的 t 值排序。
- (C)直方图显示 22 种免疫细胞类型在亚型之间的浸润分布。
- (D)热图描绘了亚型之间各种浸润免疫细胞类型的丰度。
- (E)箱线图显示亚型之间浸润的免疫细胞的差异。GSVA,基因集变异分析。
小总结
- 这是一篇转录组的纯生信文章,发表在前沿免疫(最近不知道为什么,很喜欢看前沿系列的文章,可能脑子钝了要偷懒。。),这篇文章的话分析方法也是十分常见的一些
转录组非肿瘤
的方法,难度不高易复现。 - 捋一捋:差异分析,GOKEGG富集分析,WGCNA分析,和内质网应激基因集交集,PPI网络,组间表达差异,相关性热图和ROC曲线,CMap预测,分子对接,外部验证组间表达差异和ROC曲线,外部数据集免疫浸润分析,用药数据集的组间表达,一致性聚类分簇,簇间差异表达,簇间GSVA基因集评分
- 这一篇文章篇幅可能看着长,其实不难,1.鉴定ERG,2.药物预测和分子对接,3.外部验证和免疫浸润,4.分型和基因集评分,总共就四部曲,十分适合学习和复现。