大模型应用开发-LangChain入门教程

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 大模型应用开发-LangChain入门教程

大模型应用开发-LangChain入门教程


简介:本文讲解如何使用LangChain来构造大模型应用。


LangChain简介


LangChain是一个编程框架,主要用于在应用程序中集成大型语言模型(LLM)。LangChain提供了记忆组件,用于解决大语言模型无状态的问题,使得模型能够保存上次交互的内容,从而能够更好地进行连续的对话或任务处理。


此外,LangChain还提供了多种类型的Chain类,用于处理不同的任务。其中,通用Chain类用于控制Chain的调用顺序和是否调用,它们可以用来合并构造其他的Chain。具体Chain类则承担了具体的某项任务,例如LLMChain专门用于针对语言模型LLM的查询,可以格式化prompt以及调用语言模型。


入门案例


openAI版本


  • 获取接口
  • 首先需要进入openAI官网,查看自己的接口。

  • 创建接口


  • 创建成功之后就有密钥了

  • 编写代码

在最新版的LangChain教程中,取消了直接使用key的方式,要把key先配置成环境变量,然后调用,自己的电脑的环境变量才能够运行,提高了安全性。

  • 配置环境变量

import os  
import openai  
  
# 假设 open_api_key 是一个环境变量名,而不是API密钥本身  
open_api_key_env_var = "openAI-key"  # 最好使用有意义的环境变量名  
openai_api_key = os.environ.get(open_api_key_env_var)  
  
# 确保API密钥已设置  
if not openai_api_key:  
    raise ValueError(f"Environment variable {open_api_key_env_var} is not set.")  
  
# 初始化OpenAI客户端  
client = openai.Client(api_key=openai_api_key)  
  
def get_completion(prompt, model="gpt-3.5-turbo"):  
    # 使用传入的prompt构建消息列表  
    messages = [{"role": "user", "content": prompt}]  
  
    try:  
        # 调用API并传入参数  
        response = client.chat.completions.create(  
            model=model,  
            messages=messages,  
        )  
  
        # 从响应中提取聊天完成的内容  
        return response.get("choices", [{}])[0].get("message", {}).get("content", "")  
  
    except Exception as e:  
        # 异常处理  
        print(f"An error occurred: {e}")  
        return None  
  
# 使用函数示例  
prompt_text = "Hello, how are you?"  
result = get_completion(prompt_text)  
print(result)

运行这个代码想要成功,必须要自己的openai账户有钱,才可以,但是正常情况下,大家也充值不了,所以只能够采取代理的方法了。


代理版本


通过下面的链接:https://referer.shadowai.xyz/r/1005029就可以进入代理版本,注册代理接口。

  • 再点击使用文档就可以看见详细的教程了

  • 编写代码
from openai import OpenAI

client = OpenAI(
    base_url='https://api.openai-proxy.org/v1',
    api_key='xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx',
)

chat_completion = client.chat.completions.create(
    messages=[
        {
            "role": "user",
            "content": "Say hi", # 我要问的问题
        }
    ],
    model="gpt-3.5-turbo",
)
# 获取choices列表中的第一个元素(通常只有一个choice)  
choice = chat_completion.choices[0]  
  
# 从choice中获取message对象  
message = choice.message  
  
# 获取message的内容  
content = message.content  
  
# 打印内容  
print(content)
  • 运行结果

可以看出已经运行成功了,这样我们就可以训练一个属于自己的大模型应用了,或者把接口整合到自己的网站中。

相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
11月前
|
前端开发 机器人 API
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
3032 2
|
7天前
|
监控 数据可视化 Linux
LangSmith:大模型应用开发的得力助手
LangSmith 是大模型应用开发的高效助手,提供从调试、追踪到评估的全流程支持。通过可视化追踪树,清晰展现 LLM 应用每一步执行逻辑,提升可观察性;支持提示词优化、实时监控与自动化评估,助力开发者快速定位问题、迭代优化,构建稳定可靠的智能应用。
54 0
LangSmith:大模型应用开发的得力助手
|
16天前
|
人工智能 云栖大会
2025云栖大会大模型应用开发与部署|门票申领
2025云栖大会大模型应用开发与部署门票申领
|
3月前
|
数据采集 存储 人工智能
智能体(AI Agent)开发实战之【LangChain】(二)结合大模型基于RAG实现本地知识库问答
智能体(AI Agent)开发实战之【LangChain】(二)结合大模型基于RAG实现本地知识库问答
|
3月前
|
人工智能 Java API
Java 生态大模型应用开发全流程实战案例与技术路径终极对决
在Java生态中开发大模型应用,Spring AI、LangChain4j和JBoltAI是三大主流框架。本文从架构设计、核心功能、开发体验、性能扩展性、生态社区等维度对比三者特点,并结合实例分析选型建议。Spring AI适合已有Spring技术栈团队,LangChain4j灵活性强适用于学术研究,JBoltAI提供开箱即用的企业级解决方案,助力传统系统快速AI化改造。开发者可根据业务场景和技术背景选择最适合的框架。
506 2
|
3月前
|
人工智能 API 开发者
智能体(AI Agent)开发实战之【LangChain】(一)接入大模型输出结果
LangChain 是一个开源框架,专为构建与大语言模型(LLMs)相关的应用设计。通过集成多个 API、数据源和工具,助力开发者高效构建智能应用。本文介绍了 LangChain 的环境准备(如安装 LangChain、OpenAI 及国内 DeepSeek 等库)、代码实现(以国内开源大模型 Qwen 为例,展示接入及输出结果的全流程),以及核心参数配置说明。LangChain 的灵活性和强大功能使其成为开发对话式智能应用的理想选择。
|
5月前
|
存储 人工智能 自然语言处理
LangChain RAG入门教程:构建基于私有文档的智能问答助手
本文介绍如何利用检索增强生成(RAG)技术与LangChain框架构建基于特定文档集合的AI问答系统。通过结合检索系统和生成机制,RAG能有效降低传统语言模型的知识局限与幻觉问题,提升回答准确性。文章详细展示了从环境配置、知识库构建到系统集成的全流程,并提供优化策略以改进检索与响应质量。此技术适用于专业领域信息检索与生成,为定制化AI应用奠定了基础。
1332 5
LangChain RAG入门教程:构建基于私有文档的智能问答助手
|
5月前
|
存储 人工智能 监控
通过Milvus和Langchain快速构建基于百炼大模型的LLM问答系统
阿里云向量检索服务Milvus版是一款全托管向量检索引擎,并确保与开源Milvus的完全兼容性,支持无缝迁移。它在开源版本的基础上增强了可扩展性,能提供大规模AI向量数据的相似性检索服务。凭借其开箱即用的特性、灵活的扩展能力和全链路监控告警,Milvus云服务成为多样化AI应用场景的理想选择,包括多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等。您还可以利用开源的Attu工具进行可视化操作,进一步促进应用的快速开发和部署。
|
5月前
|
自然语言处理 分布式计算 前端开发
大模型应用开发入门分享
本文是作者给兄弟团队做的大模型入门分享,介绍了基本大模型模式,分享出来希望帮助更多的同学参与到LLM应用建设。
大模型应用开发入门分享

热门文章

最新文章