4大企业实例解析:为何MongoDB Atlas成为AI服务构建的首选

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 Tair(兼容Redis),内存型 2GB
简介: 本文所提及的仅是MongoDB Atlas在AI领域可实现功能的冰山一角

随着人工智能和生成式AI技术的迅猛发展,众多企业和机构正积极利用自然语言处理(NLP)、大型语言模型(LLM)等前沿技术,打造出一系列AI驱动的产品、服务和应用程序。

本文将展示四家已在AI创新领域取得显著成效的企业,以及他们与MongoDB的紧密合作。这些企业选择了MongoDB Atlas这一多云的开发者数据平台,将操作、分析和生成式AI的数据服务完美融合,从而简化了AI应用程序的构建流程。

Pending AI:利用下一代技术,革新药物研发

澳大利亚的Pending AI公司凭借前沿的AI和量子技术,成功打造出Pending AI平台,旨在攻克药物研发初期阶段的核心难题。该平台显著提升了化合物发现流程的效率和效果,使研究人员在更短时间内、更低成本下,获得更优质、更具商业价值的模型,进而推进临床开发进程。

在开发如生成式分子设计器等核心功能时,Pending AI遭遇了巨大的挑战。因为化学领域涉及的已知药理学相关分子数量庞大无比,涵盖超过5000万种化学反应和数十亿个分子构建块。要精准设计出所需分子并确定其最佳合成路径,专业科学家往往需要经历成本高昂、耗时低效的试错过程。因此,Pending AI急需一个能够高效处理海量数据且性能卓越的数据库,以满足化学领域的广泛需求。

image.png

在对比多个数据库后,Pending AI最终选择了MongoDB。作为久经考验、稳定可靠且易于部署的解决方案,MongoDB助力Pending AI团队在MongoDB Atlas上成功构建高性能部署。尤其在Pending AI开始采用AWS云时,MongoDB Atlas以低成本的全托管方案亮相,并通过在AWS和MongoDB集群间建立私有端点,确保了数据传输的最低延迟和安全性。

展望未来,Pending AI计划进一步探索MongoDB 7.0中的Atlas Search功能。此举旨在将目前难以管理和维护的搜索功能直接集成到MongoDB中,从而摆脱对需单独维护的Elasticsearch集群的依赖,为药物研发带来更为便捷与高效的体验。

Eclipse AI:洞察客户互动,实现收入增长

Eclipse AI作为一款SaaS平台,其核心价值在于将分散于多个渠道(如客户电话、电子邮件、调查问卷、产品评论、支持工单等)的客户互动数据转化为深刻的洞察,进而助力企业留住客户并提升收入。该平台的设计初衷便是为了解决客户体验(CX)团队长期以来面临的挑战,使他们不必再为整合与分析多渠道客户反馈数据而耗费大量时间与人力。

在将客户反馈转化为可操作洞察的过程中,Eclipse AI首要面临的问题是整合那些碎片化的客户声音数据;其次,则是深入分析这些数据,提炼出具体的改进措施,以优化客户体验并防止客户流失。

MongoDB Atlas以其灵活的文档数据库特性,能够轻松存储和索引非结构化数据的向量嵌入,因此成为Eclipse AI的理想选择。借助MongoDB Atlas,Eclipse AI的开发团队能够高效、快速地构建产品,同时免去了管理基础设施的繁琐工作。此外,MongoDB Atlas Device SDKs(前称Realm)和MongoDB Atlas Search等功能在Eclipse AI平台的功能实现中发挥了至关重要的作用。

image.png

对Eclipse AI而言,MongoDB不仅是一个强大的数据库,更是一种数据即服务的理念,它助力Eclipse AI快速迭代并发布新功能,从而不断满足市场与客户的需求。

Safety Champion:构建未来安全管理,着眼生成式AI

Safety Champion,自2015年起便致力于革新安全管理行业,深知工作场所安全的重要性。该公司充分利用云技术,打破传统纸质流程局限,引领行业变革。其创始人Craig Salter强调,数据是服务核心,推动下一代安全计划的关键。因此,Safety Champion选择MongoDB作为技术基石,并于2017年采用MongoDB Atlas,提升了成本效益,降低了管理负担。

MongoDB的易用性使应用开发迅速简便,性能提升显著,为开发人员节省时间,专注业务创新和客户需求。MongoDB Charts为客户提供强大的分析功能,助力做出基于证据的安全决策。经过近十年发展,特别是在疫情期间,Safety Champion平台迅猛增长,客户数超2000家,每月处理文档高达10万份,开发团队规模翻倍。

image.png

展望未来,Safety Champion计划利用MongoDB在生成式AI、搜索和多区域等方面的优势,满足多样化需求。公司正升级至MongoDB 6.0,全面融入MongoDB Search,并计划于2024年下半年使用MongoDB Vector Search。Safety Champion正研究利用语义洞察理解员工文本数据,结合大型语言模型提取有价值信息。

Craig Salter表示,客户期望从数据中获取深入分析、见解和更高层次意义。MongoDB Atlas支持下的Safety Champion新平台,标志着公司迈向新阶段,借助生成式AI等功能,引领安全管理新纪元。

Syncly:利用MongoDB Atlas Vector Search加速客户反馈分析创新

在现今商业环境中,企业对客户反馈的迅速响应与深入分析已成为业务增长的关键。客户之声(VoC)服务日益复杂,需要借助AI技术提升分析效率。韩国的Syncly公司,作为软件即服务领域的初创企业,敏锐捕捉到了VoC市场的潜力,推出了AI驱动的客户反馈分析解决方案。

Syncly平台集成多种渠道,实时收集、管理VoC数据,并通过AI进行深入分析,为企业提出改进措施,增强客户关系。其服务核心在于自动处理大量数据,为VoC提供全面可见性,并重视语义搜索在定性分析中的作用。

然而,传统搜索功能在处理复杂数据时存在局限。Syncly积极采用AI技术,应对结构化与非结构化数据的挑战,实现高效相似性分析。为此,Syncly引入了MongoDB Atlas Vector Search,自动化数据加载与相似性分析,减轻开发者负担,提高生产力。

image.png
图四:Syncly 平台

MongoDB Atlas是为AI量身打造的数据库解决方案。MongoDB以其卓越的能力,助力企业及其开发团队有效管理那些难以整齐地适应传统关系数据库严格行和列结构的丰富结构化数据,并将其转化为富有意义且具备操作性的洞察,从而推动AI的实际应用。

此外,MongoDB Atlas新增的Vector Search(向量搜索)功能,使得开发者能够构建出由语义搜索和生成式AI驱动的智能应用,这些应用可适用于各种类型的数据。

同时,MongoDB Atlas还引入了AWS CodeWhisperer编码助手,为企业提供了更多探索AI的可能性。

本文所提及的仅是MongoDB Atlas在AI领域可实现功能的冰山一角。MongoDB的客户遍布全球,涵盖从初创企业到游戏、汽车、制造业、银行、电信等多个行业。这些客户正积极采用MongoDB Atlas及其Atlas Search、向量搜索等功能,共同描绘出未来十年AI和生成式AI的发展蓝图。

相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。   相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
相关文章
|
23天前
|
人工智能
巧妙构建歌词结构:写歌词的技巧和方法之关键,妙笔生词AI智能写歌词软件
在音乐世界里,歌词是灵魂的载体,构建其结构至关重要。优秀的歌词需有引人入胜的开头、条理清晰且富变化的主体,以及深刻难忘的结尾。《妙笔生词智能写歌词软件》提供多种功能,帮助创作者克服结构难题,激发灵感,助你写出打动人心的歌词,开启音乐创作的新篇章。
|
23天前
|
人工智能
歌词结构的巧妙安排:写歌词的方法与技巧解析,妙笔生词AI智能写歌词软件
歌词创作是一门艺术,关键在于巧妙的结构安排。开头需迅速吸引听众,主体部分要坚实且富有逻辑,结尾则应留下深刻印象。《妙笔生词智能写歌词软件》提供多种 AI 功能,帮助创作者找到灵感,优化歌词结构,写出打动人心的作品。
|
16天前
|
人工智能 前端开发 Java
基于开源框架Spring AI Alibaba快速构建Java应用
本文旨在帮助开发者快速掌握并应用 Spring AI Alibaba,提升基于 Java 的大模型应用开发效率和安全性。
基于开源框架Spring AI Alibaba快速构建Java应用
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
65 11
|
15天前
|
人工智能 运维 NoSQL
云栖大会|多模+一体化,构建更高效的AI应用
在2024年云栖大会「NoSQL数据库」专场,多位知名企业和阿里云瑶池数据库团队的技术专家,共同分享了阿里云Lindorm、Tair、MongoDB和MyBase的最新进展与实践。Tair推出Serverless KV服务,解决性能瓶颈和运维难题;Lindorm助力AI和具身智能时代的多模数据处理;MongoDB云原生化提升开发效率;MyBase One打破云边界,提供云边端一体化服务。这些技术进展和最佳实践,展示了阿里云在NoSQL数据库领域的创新能力和广泛应用前景。
|
15天前
|
存储 NoSQL MongoDB
MongoDB面试专题33道解析
大家好,我是 V 哥。今天为大家整理了 MongoDB 面试题,涵盖 NoSQL 数据库基础、MongoDB 的核心概念、集群与分片、备份恢复、性能优化等内容。这些题目和解答不仅适合面试准备,也是日常工作中深入理解 MongoDB 的宝贵资料。希望对大家有所帮助!
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI驱动的个性化学习平台构建###
【10月更文挑战第29天】 本文将深入探讨如何利用人工智能技术,特别是机器学习与大数据分析,构建一个能够提供高度个性化学习体验的在线平台。我们将分析当前在线教育的挑战,提出通过智能算法实现内容定制、学习路径优化及实时反馈机制的技术方案,以期为不同背景和需求的学习者创造更加高效、互动的学习环境。 ###
38 3
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
医疗行业的语音识别技术解析:AI多模态能力平台的应用与架构
AI多模态能力平台通过语音识别技术,实现实时转录医患对话,自动生成结构化数据,提高医疗效率。平台具备强大的环境降噪、语音分离及自然语言处理能力,支持与医院系统无缝集成,广泛应用于门诊记录、多学科会诊和急诊场景,显著提升工作效率和数据准确性。
|
21天前
|
NoSQL Cloud Native atlas
探索云原生数据库:MongoDB Atlas 的实践与思考
【10月更文挑战第21天】本文探讨了MongoDB Atlas的核心特性、实践应用及对云原生数据库未来的思考。MongoDB Atlas作为MongoDB的云原生版本,提供全球分布式、完全托管、弹性伸缩和安全合规等优势,支持快速部署、数据全球化、自动化运维和灵活定价。文章还讨论了云原生数据库的未来趋势,如架构灵活性、智能化运维和混合云支持,并分享了实施MongoDB Atlas的最佳实践。
|
22天前
|
NoSQL Cloud Native atlas
探索云原生数据库:MongoDB Atlas 的实践与思考
【10月更文挑战第20天】本文探讨了MongoDB Atlas的核心特性、实践应用及对未来云原生数据库的思考。MongoDB Atlas作为云原生数据库服务,具备全球分布、完全托管、弹性伸缩和安全合规等优势,支持快速部署、数据全球化、自动化运维和灵活定价。文章还讨论了实施MongoDB Atlas的最佳实践和职业心得,展望了云原生数据库的发展趋势。