对谈Concured首席技术官:利用AI和MongoDB打造个性化内容推荐系统

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 Tair(兼容Redis),内存型 2GB
简介: 内容无处不在。无论消费者寻找什么或所处任何行业,找到内容并不困难;关键在于如何找到对应的内容。

Built with MongoDB 栏目采访了AI初创企业Concured在成立约一年后加入的首席技术官 Tom Wilson,围绕 Concured 的人工智能使用情况、Wilson 加入团队的过程、坚持选择MongoDB的原因以及公司未来发展展开讨论。

关于Concured

image.png

内容无处不在。无论消费者寻找什么或所处任何行业,找到内容并不困难;关键在于如何找到对应的内容。而这就是 Concured 专注的领域。

Concured 是一家来自蒙特利尔的AI 初创企业,致力于协助市场营销团队对标受众,有的放矢地打造网站和销售内容;同时,帮助内容营销团队脱颖而出,加速基于洞察驱动的内容个性化。2015 年,首席执行官 Tom Salvat 创立 Concured,旨在助力内容营销机构更深入地理解受众需求,交付更具影响力的内容。

Built with MongoDB:Concured 是做什么的?

Tom Wilson:Concured 是一家软件公司,以过去 5-10 年间发展的人工智能技术为基础,帮助市场营销人员了解如何撰写具体领域的宣发物料,发掘自身内容亮点,把握竞争对手以及行业宣发现状;进而打造个性化的客户网站使用体验,最大化内容投资收益比。

Concured 已成功推出一套内容推荐系统,能够为每位访问者提供针对性服务。这套系统注重用户隐私,不使用任何第三方 cookie 或用户监视技术,完全基于网站用户的操作,通过访问者的点击行为勾勒出其兴趣领域。随着用户的兴趣和目的逐渐清晰,这套系统会尝试推荐新的阅读内容,比如博文、产品介绍或其他类型的内容。

Built with MongoDB:Concured 是如何使用人工智能的呢?

Wilson:我们运用人工智能的场景有很多。有别于其他个性化系统,Concured 的卖点之一是不需要过长的整合期,也无需在日常管理中进行维护。实现的途径是借助 AI 机器人剖析客户网站的内容,发掘相关性,提取文本、标题和其他所有相关元数据,然后完成自动索引。

我们的系统利用先进的自然语言处理 (NLP) 技术,为每个文档生成语义元数据,在多维空间中与特定点相对应。另一方面是理解其中的关键实体,以及同一个网站中某一篇特定文章与其他文章之间的关系。我们利用 AI 支持的网络爬虫找到的所有内容都会自动附上海量元数据。

image.png

Built with MongoDB:AI 并不总是 100% 准确,您在 Concured 打造的 NLP 的准确度怎么样呢?

Wilson:以内容推荐系统而言,很难断定什么是最佳推荐,因为即便是同一个人,根据日期或网络操作的不同,推荐也会有所变化。例如一些知名的推荐系统,如 Netflix、Amazon 和 Spotify,总是在猜我们接下来想看什么,但其实并没有一个唯一正确的答案。

正因如此,推荐系统的性能评估变得非常困难。所以,我们采取的方式并不是提供 100% 对应的正确答案,而是通过改变算法,来看访问者是否会点击更多的文章,或进入网站运营商定义的目标页面,比如产品页面或注册表单。访问者最终采取预期行动的比例越高,说明推荐系统越出色。通过比较采用Concured个性化系统前后的网站转化率,我们可以看到2-3 倍的提升,这显示出算法持续优化的成果。

Built with MongoDB:您是何时加入到 Concured 团队的?

Wilson:当时公司已经得到第一笔来自外部的巨额投资,条件之一是引入一位专业的首席技术官。这种情况在企业初创期比较常见,投资方想要介入企业架构,把控资金流向,减少鲁莽行事。所以,有些企业将其戏称为“家长式监督”。我不知道这算不算是我的角色,毕竟当时的团队已经很强大;但我还是从架构入手,从根本上确保我们能够实现后续的目标,以及更长期的战略规划和技术愿景。

image.png

Built with MongoDB:您的团队是如何选择 MongoDB 的?

Wilson:我加入时,团队已经在使用 MongoDB。加入后的几个月里,我们讨论过是否要换用结构化的数据库,这在当时是一个必须要做的决定。所以我才参与其中,经过深思熟虑,决定继续使用 MongoDB。事实证明这个决定是完全正确的,有利于我们实现最初的愿景。同时,我们将弃用Google Cloud Platform上的社区版本,换用 MongoDB Atlas Serverless。令人欣喜的是,归功于无服务器,我们将不再需要管理各种机器,还能够使用 Atlas 上的文本搜索功能,顺便简化一下我们的技术堆栈。作为一家企业,就我们当下所处的位置以及未来五年的发展方向而言,MongoDB 始终是我们正确的选择。

Built with MongoDB: Concured 的未来是什么样的?

Wilson:就在我们交谈的过程中,未来已经被书写。此时此刻,越来越多和我们大客户有着相同需求的企业正在找到我们。这些企业那些有着海量、已存档的内容,需要继续从中挖掘价值和进行大量发布。无论是咨询公司、金融服务行业的大企业,还是传统出版商,他们都希望确保推广的内容是精准的,并能以相应的 KPI 为基准,产出利益最大化的对应内容。
image.png

Built with MongoDB:您收到的最好反馈是什么?

Wilson:我的团队给我的一条正面反馈,是说我有担当。如果他们遇到问题,我会出手解决或者减少阻力,这样他们就可以全力以赴解决问题。这是我的人生观:如果你用心领导团队,事情就会自然顺利推进。

扫码加入钉群,与MongoDB专家一对一沟通,了解更多阿里云MongoDB产品与方案,市场活动及线上培训等内容。
4D23CF4C-EABF-40B3-80BE-5E4EDE071C42.png

相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。   相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
相关文章
|
6天前
|
人工智能 弹性计算 搜索推荐
打造个性化的微信公众号AI小助手:从人设到工作流程
在数字化时代,一个有个性且功能强大的AI小助手能显著提升用户体验。本文档指导如何在微信公众号上设置AI小助手“小智”,涵盖其人设、功能规划及工作流程设计,旨在打造一个既智能又具吸引力的AI伙伴。
23 0
|
9天前
|
存储 人工智能 自然语言处理
高级 RAG 技术:提升生成式 AI 系统输出质量与性能鲁棒性【预检索、检索、检索后、生成优化等】
高级 RAG 技术:提升生成式 AI 系统输出质量与性能鲁棒性【预检索、检索、检索后、生成优化等】
高级 RAG 技术:提升生成式 AI 系统输出质量与性能鲁棒性【预检索、检索、检索后、生成优化等】
|
3天前
|
机器学习/深度学习 人工智能 供应链
AI技术在医疗领域的应用与未来展望###
本文深入探讨了人工智能(AI)技术在医疗领域的多种应用及其带来的革命性变化,从疾病诊断、治疗方案优化到患者管理等方面进行了详细阐述。通过具体案例和数据分析,展示了AI如何提高医疗服务效率、降低成本并改善患者体验。同时,文章也讨论了AI技术在医疗领域面临的挑战和未来发展趋势,为行业从业者和研究人员提供参考。 ###
|
3天前
|
机器学习/深度学习 人工智能 搜索推荐
人工智能与未来医疗:AI技术如何重塑医疗健康领域###
【10月更文挑战第21天】 一场由AI驱动的医疗革命正在悄然发生,它以前所未有的速度和深度改变着我们对于疾病预防、诊断、治疗及健康管理的认知。本文探讨了AI在医疗领域的多维度应用,包括精准医疗、药物研发加速、远程医疗普及以及患者个性化治疗体验的提升,揭示了这场技术变革背后的深远意义与挑战。 ###
23 6
|
3天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗领域的应用与挑战
【10月更文挑战第21天】 本文探讨了人工智能(AI)在医疗领域的多种应用,包括疾病诊断、治疗方案推荐、药物研发和患者管理等。通过分析这些应用案例,我们可以看到AI技术如何提高医疗服务的效率和准确性。然而,AI在医疗领域的广泛应用也面临诸多挑战,如数据隐私保护、算法透明度和伦理问题。本文旨在为读者提供一个全面的视角,了解AI技术在医疗领域的潜力和面临的困难。
|
4天前
|
人工智能 自然语言处理 监控
AI技术在文本情感分析中的应用
【10月更文挑战第22天】本文将探讨人工智能(AI)如何改变我们对文本情感分析的理解和应用。我们将通过实际的代码示例,深入了解AI如何帮助我们识别和理解文本中的情感。无论你是AI新手还是有经验的开发者,这篇文章都将为你提供有价值的信息。让我们一起探索AI的奇妙世界吧!
13 3
|
4天前
|
人工智能 边缘计算 监控
边缘AI计算技术应用-实训解决方案
《边缘AI计算技术应用-实训解决方案》提供完整的实训体系,面向高校和科研机构的AI人才培养需求。方案包括云原生AI平台、百度AIBOX边缘计算硬件,以及8门计算机视觉实训课程与2门大模型课程。AI平台支持大规模分布式训练、超参数搜索、标注及自动化数据管理等功能,显著提升AI训练与推理效率。硬件涵盖多规格AIBOX服务器,支持多种推理算法及灵活部署。课程涵盖从计算机视觉基础到大模型微调的完整路径,通过真实商业项目实操,帮助学员掌握前沿AI技术和产业应用。
19 2
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
开源版GPT-4o来了,AI大神Karpathy盛赞!67页技术报告全公开
【10月更文挑战第20天】近日,开源版GPT-4o的发布成为AI领域的焦点。作为GPT系列的最新成员,GPT-4o在性能和多模态数据处理方面实现了显著提升,得到了知名AI专家Andrej Karpathy的高度评价。该模型的开源特性将进一步促进AI研究的进展。
15 3
|
5天前
|
机器学习/深度学习 人工智能 测试技术
探索 AI 驱动的软件开发:未来技术的新趋势
【10月更文挑战第19天】本文探讨了人工智能(AI)在软件开发中的应用现状和技术优势,包括代码生成、缺陷检测、自动化测试和性能优化。AI 可以提高开发效率、减少人为错误、加速创新并持续学习。文章还讨论了实施 AI 驱动开发的挑战和最佳实践,强调了数据管理和技能培训的重要性。
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术前沿探索:解锁智能时代的无限可能
【10月更文挑战第22天】AI技术前沿探索:解锁智能时代的无限可能
11 1

热门文章

最新文章

  • 1
    2024 Mysql基础与进阶操作系列之MySQL触发器详解(20)作者——LJS[你个小黑子这都还学不会嘛?你是真爱粉嘛?真是的 ~;以后请别侮辱我家鸽鸽]
    4
  • 2
    2024 RedisAnd Mysql基础与进阶操作系列(16-1)作者——LJS[你个小黑子这都还学不会嘛?你是真爱粉嘛?真是的 ~;以后请别侮辱我家鸽鸽]
    4
  • 3
    2024Mysql And Redis基础与进阶操作系列(13)作者——LJS[你个小黑子这都还学不会嘛?你是真爱粉嘛?真是的 ~;以后请别侮辱我家鸽鸽]
    6
  • 4
    2024Mysql And Redis基础与进阶操作系列(10)作者——LJS[你个IKUN还学不会嘛?你是真爱粉嘛?真是的 ~;以后别侮辱我家鸽鸽]
    5
  • 5
    2024 RedisAnd Mysql基础与进阶操作系列(15)作者——LJS[你个小黑子这都还学不会嘛?你是真爱粉嘛?真是的 ~;以后请别侮辱我家鸽鸽]
    4
  • 6
    2024Mysql And Redis基础与进阶操作系列(9)作者——LJS[含MySQL存储过程之局部、系统变量、参数传递、流程控制-判断/case具体详步骤;注意点及常见报错问题所对应的解决方法]
    7
  • 7
    2024 Mysql基础与进阶操作系列之MySQL触发器详解(21)作者——LJS[你个小黑子这都还学不会嘛?你是真爱粉嘛?真是的 ~;以后请别侮辱我家鸽鸽]
    4
  • 8
    2024 RedisAnd Mysql基础与进阶操作系列(19)作者——LJS[你个小黑子这都还学不会嘛?你是真爱粉嘛?真是的 ~;以后请别侮辱我家鸽鸽]
    6
  • 9
    2024 RedisAnd Mysql基础与进阶操作系列(18)作者——LJS[你个小黑子这都还学不会嘛?你是真爱粉嘛?真是的 ~;以后请别侮辱我家鸽鸽]
    5
  • 10
    2024 RedisAnd Mysql基础与进阶操作系列(13)作者——LJS[你个小黑子这都还学不会嘛?你是真爱粉嘛?真是的 ~;以后请别侮辱我家鸽鸽]
    7