【Hadoop Yarn】YARN 基础架构分析

简介: 【4月更文挑战第7天】【Hadoop Yarn】YARN 基础架构分析

image.png

YARN(Yet Another Resource Negotiator)基础架构分析

YARN作为Hadoop生态系统中的一个核心组件,负责集群资源的管理和作业调度。它的出现极大地增强了Hadoop集群的灵活性和扩展性,使得不仅仅是MapReduce作业,还可以支持多种计算框架的运行,例如Apache Spark、Apache Flink等。在本文中,我们将对YARN的基础架构进行深入分析,包括其核心组件、工作原理以及关键代码片段。

1. YARN的核心组件

YARN主要由以下几个核心组件组成:

  1. ResourceManager(资源管理器):集群中的一个主节点,负责整个集群的资源管理和作业调度。ResourceManager有两个主要的组件:Scheduler(调度器)和ApplicationsManager(应用程序管理器)。

  2. NodeManager(节点管理器):运行在每个集群节点上的代理服务,负责监控节点资源的使用情况,并与ResourceManager通信以报告节点的可用资源。

  3. ApplicationMaster(应用程序主管):每个应用程序在集群中启动时,都会有一个对应的ApplicationMaster被分配。ApplicationMaster负责与ResourceManager协商资源,并与NodeManager协调容器的启动、监控和状态报告。

  4. Container:YARN中的资源抽象,用来封装运行应用程序所需的资源,如内存、CPU等。Container是YARN中资源分配的基本单位。

2. YARN的工作原理

YARN的工作原理可以简单概括为资源管理和作业调度。当一个应用程序提交到YARN集群时,ResourceManager会为该应用程序分配一个唯一的应用程序ID,并为其启动一个对应的ApplicationMaster。ApplicationMaster负责与ResourceManager协商资源,并与NodeManager协调容器的启动、监控和状态报告。NodeManager负责监控节点资源的使用情况,并与ResourceManager通信以报告节点的可用资源。ResourceManager根据集群的资源状况为应用程序分配容器,容器是运行在节点上的应用程序实例的抽象。应用程序在容器中运行,并将状态信息报告给ApplicationMaster。当应用程序完成或失败时,ApplicationMaster通知ResourceManager释放已分配的资源。

3. ResourceManager

ResourceManager是YARN的核心组件之一,负责整个集群的资源管理和作业调度。它主要有两个子组件:Scheduler(调度器)和ApplicationsManager(应用程序管理器)。

Scheduler

Scheduler负责将集群中的资源分配给不同的应用程序。它有不同的调度器实现,可以根据需求选择不同的调度算法,如容量调度、公平调度等。Scheduler通过与NodeManager通信来确定可用资源,并根据调度策略将这些资源分配给不同的应用程序。

// Scheduler.java

public abstract class Scheduler {
   
   
    public abstract void allocateContainers(Application application, ResourceRequest resourceRequest);
    public abstract void releaseContainers(Application application, List<ContainerID> containers);
}
AI 代码解读

ApplicationsManager

ApplicationsManager负责管理集群中运行的应用程序。它接收客户端提交的应用程序,并为每个应用程序分配一个唯一的应用程序ID,并为其启动一个对应的ApplicationMaster。

// ApplicationsManager.java

public class ApplicationsManager {
   
   
    public ApplicationID submitApplication(Application application) {
   
   
        // 为应用程序分配唯一的ID
        ApplicationID applicationID = generateApplicationID();
        // 创建对应的ApplicationMaster
        ApplicationMaster applicationMaster = createApplicationMaster(application, applicationID);
        // 启动ApplicationMaster
        applicationMaster.start();
        return applicationID;
    }

    private ApplicationID generateApplicationID() {
   
   
        // 生成唯一的应用程序ID
    }

    private ApplicationMaster createApplicationMaster(Application application, ApplicationID applicationID) {
   
   
        // 创建对应的ApplicationMaster
    }
}
AI 代码解读

4. NodeManager

NodeManager是YARN的另一个核心组件,运行在每个集群节点上,负责监控节点资源的使用情况,并与ResourceManager通信以报告节点的可用资源。

NodeManager启动

NodeManager启动时,会初始化节点资源信息,并启动RPC服务,以便与ResourceManager和ApplicationMaster通信。

// NodeManager.java

public class NodeManager {
   
   
    public void start() {
   
   
        // 获取节点资源信息
        NodeResources nodeResources = getNodeResources();
        // 启动RPC服务
        RPCServer rpcServer = new RPCServer();
        rpcServer.start();
        // 处理请求
        while (true) {
   
   
            Request request = rpcServer.receiveRequest();
            if (request.getType() == RequestType.START_CONTAINER) {
   
   
                Container container = request.getContainer();
                startContainer(container);
            } else if (request.getType() == RequestType.STOP_CONTAINER) {
   
   
                ContainerID containerID = request.getContainerID();
                stopContainer(containerID);
            }
        }
    }
}
AI 代码解读

5. ApplicationMaster

ApplicationMaster是YARN的另一个核心组件,负责与ResourceManager协商资源,并与NodeManager协调容器的启动、监控和状态报告。

ApplicationMaster启动

ApplicationMaster启动时,会向ResourceManager注册,并开始协商资源分配。

// ApplicationMaster.java

public class ApplicationMaster {
   
   
    public void start() {
   
   
        // 向ResourceManager注册
        registerWithResourceManager();
        // 协商资源分配
        negotiateResourceAllocation();
    }

    private void registerWithResourceManager() {
   
   
        // 向ResourceManager注册
    }

    private void negotiateResourceAllocation() {
   
   
        // 协商资源分配
    }
}
AI 代码解读

结论

通过对YARN的基础架构分析,我们了解了其核心组件、工作原理以及关键代码片段。YARN作为Hadoop生态系统中的一个重要组件,为大规模数据处理提供了强大的支持,同时也为不同类型的计算框架提供了统一的资源管理和作业调度平台。随着大数据技术的不断发展,YARN将继续发挥重要作用,推动着大数据处理技术的进步与创新。

目录
打赏
0
0
0
0
149
分享
相关文章
【赵渝强老师】史上最详细:Hadoop HDFS的体系架构
HDFS(Hadoop分布式文件系统)由三个核心组件构成:NameNode、DataNode和SecondaryNameNode。NameNode负责管理文件系统的命名空间和客户端请求,维护元数据文件fsimage和edits;DataNode存储实际的数据块,默认大小为128MB;SecondaryNameNode定期合并edits日志到fsimage中,但不作为NameNode的热备份。通过这些组件的协同工作,HDFS实现了高效、可靠的大规模数据存储与管理。
355 70
大型多模态推理模型技术演进综述:从模块化架构到原生推理能力的综合分析
该研究系统梳理了大型多模态推理模型(LMRMs)的技术发展,从早期模块化架构到统一的语言中心框架,提出原生LMRMs(N-LMRMs)的前沿概念。论文划分三个技术演进阶段及一个前瞻性范式,深入探讨关键挑战与评估基准,为构建复杂动态环境中的稳健AI系统提供理论框架。未来方向聚焦全模态泛化、深度推理与智能体行为,推动跨模态融合与自主交互能力的发展。
161 13
大型多模态推理模型技术演进综述:从模块化架构到原生推理能力的综合分析
十大主流联邦学习框架:技术特性、架构分析与对比研究
联邦学习(FL)是保障数据隐私的分布式模型训练关键技术。业界开发了多种开源和商业框架,如TensorFlow Federated、PySyft、NVFlare、FATE、Flower等,支持模型训练、数据安全、通信协议等功能。这些框架在灵活性、易用性、安全性和扩展性方面各有特色,适用于不同应用场景。选择合适的框架需综合考虑开源与商业、数据分区支持、安全性、易用性和技术生态集成等因素。联邦学习已在医疗、金融等领域广泛应用,选择适配具体需求的框架对实现最优模型性能至关重要。
1320 79
十大主流联邦学习框架:技术特性、架构分析与对比研究
一文详解:工业软件“低代码开发平台”技术架构研究与分析
本文围绕工业软件低代码开发平台的机遇与挑战,提出基于自动化引擎的技术架构,由工具链、引擎库、模型库、组件库、工业数据网关和应用门户组成。文章分析了其在快速开发、传统系统升级中的应用模式及价值,如缩短创新周期、降低试错成本、解决资源缺乏和提升创新可复制性,为我国工业软件产业发展提供参考和支持。
基于 Spring Cloud 的微服务架构分析
Spring Cloud 是一个基于 Spring Boot 的微服务框架,提供全套分布式系统解决方案。它整合了 Netflix、Zookeeper 等成熟技术,通过简化配置和开发流程,支持服务发现(Eureka)、负载均衡(Ribbon)、断路器(Hystrix)、API网关(Zuul)、配置管理(Config)等功能。此外,Spring Cloud 还兼容 Nacos、Consul、Etcd 等注册中心,满足不同场景需求。其核心组件如 Feign 和 Stream,进一步增强了服务调用与消息处理能力,为开发者提供了一站式微服务开发工具包。
130 0
湖仓分析|浙江霖梓基于 Doris + Paimon 打造实时/离线一体化湖仓架构
浙江霖梓早期基于 Apache Doris 进行整体架构与表结构的重构,并基于湖仓一体和查询加速展开深度探索与实践,打造了 Doris + Paimon 的实时/离线一体化湖仓架构,实现查询提速 30 倍、资源成本节省 67% 等显著成效。
湖仓分析|浙江霖梓基于 Doris + Paimon 打造实时/离线一体化湖仓架构
体育赛事即时比分 分析页面的开发技术架构与实现细节
本文基于“体育即时比分系统”开发经验总结,分享技术实现细节。系统通过后端(ThinkPHP)、前端(Vue.js)、移动端(Android/iOS)协同工作,解决实时比分更新、赔率同步及赛事分析展示等问题。前端采用 Vue.js 结合 WebSocket 实现数据推送,提升用户体验;后端提供 API 支持比赛数据调用;移动端分别使用 Java 和 Objective-C 实现跨平台功能。代码示例涵盖比赛分析页面、API 接口及移动端数据加载逻辑,为同类项目开发提供参考。
MPP 架构与 Hadoop 架构技术选型指南
MPP架构与Hadoop架构是处理海量数据的两大选择。MPP通过大规模并行处理实现快速查询响应,适用于企业级数据仓库和OLAP应用;Hadoop则以分布式存储和计算为核心,擅长处理非结构化数据和大数据分析。两者各有优劣,MPP适合结构化数据和高性能需求场景,而Hadoop在扩展性和容错性上表现更佳。选择时需综合考虑业务需求、预算和技术能力。
580 14
一文分析架构思维之建模思维
软件里的要素不是凭空出现的,都是源于实际的业务。本文从软件设计本源到建模案例系统的介绍了作者对于建模的思维和思考。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问