从动态规划到贪心算法:最长递增子序列问题的方法全解析

本文涉及的产品
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介: 从动态规划到贪心算法:最长递增子序列问题的方法全解析

题型简介

经典例题:300. 最长递增子序列 - 力扣(LeetCode)

最长递增子序列(Longest Increasing subsequence,LIS)是一个经典的问题。最长递增子序列是指在一个序列中,以不下降的顺序连续排列的一系列元素的子序列。这个子序列的长度就是最长递增子序列的长度。

题解代码

虽然注释详细,但与后文解题思路对应食用风味更佳~

#include <iostream>
#include <vector>
 
using namespace std;
 
int lengthOfLIS(vector<int>& nums) 
{
    // 如果输入序列为空,返回 0
    if (nums.empty()) 
    {
        return 0;
    }
 
    // 定义 dp 数组,长度为输入序列的长度
    int dp[nums.size()];
    // 初始化 dp 数组,将所有元素初始化为 1
    for (int i = 0; i < nums.size(); i++) 
    {
        dp[i] = 1;
    }
 
    // 记录最长递增子序列的长度
    int maxn = 1;
 
    // 遍历输入序列,从第 2 个元素开始,因为第一个元素的 dp[0] 一定是 1
    for (int i = 1; i < nums.size(); i++) 
    {
        // 遍历之前的元素,找到满足条件的索引 j
        for (int j = 0; j < i; j++) 
        {
            // 如果当前元素小于之前的元素,并且之前元素的最长递增子序列长度加 1 大于当前元素的最长递增子序列长度
            if ((nums[j] < nums[i]) && (dp[j] + 1 > dp[i])) 
            {
                // 更新当前元素的最长递增子序列长度为之前元素的最长递增子序列长度加 1
                // 因为if条件是nums[j] < nums[i],所以当前i位置的num一定是可以往j位置的数字后拼接作为递增子序列的
                // 所以更新当前i的dp作为新的当前dp[i]
                dp[i] = dp[j] + 1;
            }
        }
 
        // 在与每次遍历完当前i的j后更新的dp[i]与之前的maxn作对比
        // 得到当前最长递增子序列的长度
        if (dp[i] > maxn) 
        {
            maxn = dp[i];
        }
    }
 
    // 返回最长递增子序列的长度
    return maxn;
}
 
int main() 
{
    vector<int> nums = { 10, 9, 2, 5, 3, 7, 101, 18 };
    // 输出:4
    cout << lengthOfLIS(nums) << endl;
 
    return 0;
}

解题思路

1. 贪心策略(Greedy algorithms):

贪心算法的核心是以少博多,以最优解为目标

贪心策略是选择当前未处理元素中最小的元素,将其添加到最长递增子序列的末尾。这种策略的基本思想是尽可能地选择较小的元素,以保证子序列的递增性。

在代码中,我们通过比较当前元素 nums[i] 和之前元素 nums[j]j < i)的大小来更新最长递增子序列的长度。如果 nums[j] < nums[i],并且 dp[j] + 1 > dp[i],我们就选择 nums[j] 作为最长递增子序列的一部分,并更新 dp[i]dp[j] + 1

2. 动态规划(Dynamic programming):

动态规划是一种通过将问题分解为子问题来解决问题的方法。在最长递增子序列问题中,动态规划的基本思想是通过递推公式来计算每个元素的最长递增子序列长度。

在代码中,我们使用了一个长度为 nums.size() 的数组 dp 来存储每个元素的最长递增子序列长度。递推公式为 dp[i] = max(dp[j] + 1, dp[i]),其中 j < i 表示之前的元素。通过递推公式,我们可以逐步计算出每个元素的最长递增子序列长度。

剔骨刀(精细点)

    for (int i = 1; i < nums.size(); i++) 
    {
        for (int j = 0; j < i; j++) 
        {
            if ((nums[j] < nums[i]) && (dp[j] + 1 > dp[i])) 
            {
                dp[i] = dp[j] + 1;
            }
        }
 
        if (dp[i] > maxn) 
        {
            maxn = dp[i];
        }
    }

动态规划问题难点在于它的递推公式理解。

这里的 (nums[j] < nums[i]) && (dp[j] + 1 > dp[i]) 中的 dp[j] 可以当做前面已经在该下标上取得的最长递增子序列的个数,因为if条件(nums[j] < nums[i]) && (dp[j] + 1 > dp[i]),当条件通过时说明当前 i 位置的num一定是可以往j位置的数字后拼接作为递增子序列的,所以dp[j] + 1的意思就是说,只要在if条件内他都可以拼接,但是如果dp[j] + 1都小于dp[i]的话,那么它就不是最长子序列了,不会进行 +1 ,保留原来的 dp[i] 大小。  



目录
相关文章
|
22天前
|
安全 Ubuntu Shell
深入解析 vsftpd 2.3.4 的笑脸漏洞及其检测方法
本文详细解析了 vsftpd 2.3.4 版本中的“笑脸漏洞”,该漏洞允许攻击者通过特定用户名和密码触发后门,获取远程代码执行权限。文章提供了漏洞概述、影响范围及一个 Python 脚本,用于检测目标服务器是否受此漏洞影响。通过连接至目标服务器并尝试登录特定用户名,脚本能够判断服务器是否存在该漏洞,并给出相应的警告信息。
143 84
|
3天前
|
数据可视化 项目管理
个人和团队都好用的年度复盘工具:看板与KPT方法解析
本文带你了解高效方法KPT复盘法(Keep、Problem、Try),结合看板工具,帮助你理清头绪,快速完成年度复盘。
31 7
个人和团队都好用的年度复盘工具:看板与KPT方法解析
|
3天前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
27天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
149 30
|
7天前
|
存储 监控 算法
企业内网监控系统中基于哈希表的 C# 算法解析
在企业内网监控系统中,哈希表作为一种高效的数据结构,能够快速处理大量网络连接和用户操作记录,确保网络安全与效率。通过C#代码示例展示了如何使用哈希表存储和管理用户的登录时间、访问IP及操作行为等信息,实现快速的查找、插入和删除操作。哈希表的应用显著提升了系统的实时性和准确性,尽管存在哈希冲突等问题,但通过合理设计哈希函数和冲突解决策略,可以确保系统稳定运行,为企业提供有力的安全保障。
|
21天前
|
存储 Java 开发者
浅析JVM方法解析、创建和链接
上一篇文章《你知道Java类是如何被加载的吗?》分析了HotSpot是如何加载Java类的,本文再来分析下Hotspot又是如何解析、创建和链接类方法的。
|
9天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
143 80
|
3天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
2天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。

推荐镜像

更多