AI日报:人工智能使用和评估的关键任务

简介: AI日报:人工智能使用和评估的关键任务

总览

在不断发展的人工智能领域,“环中人”(HITL)范式已成为一股关键力量,突显了先进算法和人类专业知识之间的重要合作。

HITL模型本质上承认并利用了机器智能和人类直觉所固有的独特优势。这证明了一种信念,即人工智能和人类智能之间的协同作用不仅提高了结果的质量,而且培养了对人工智能系统能力的深刻信任感。

对于发起人工智能倡议的组织来说,灌输HITL框架将确保人工监督推动人工智能的使用,并带来更好的业务成果。

成为循环中的人

随着企业在生成人工智能的复杂地形中导航,值得信赖的人工智能解决方案的必要性变得越来越明显。在人工智能不断发展的过程中,最重要的考虑因素之一是加强对人类责任和问责制作用的认识,主要是当人类专家主导重大决策时。随着生成性人工智能的发展和承担更复杂的任务,人类专家充当着关键的监督者,确保决策符合道德标准和社会价值观。

此外,人类和生成型人工智能之间的合作允许动态和自适应的决策过程。人类专家带来了上下文理解、情商和细致入微的判断,这些属性对算法来说很难全面掌握。这种人机协作增强了决策结果,并确保采用更全面、更具包容性的方法来解决问题。

规范

为了在人工智能中构建HITL框架,一个组织应该从一开始就建立一套明确的数据伦理原则。这第一个也是重要的步骤是为运行HITL框架的人员提供一个锚。尽管创新浪潮围绕着他们袭来,但这个锚让他们坚持前进。人工智能开发人员应定期接受数据伦理原则、风险管理技术和模型设计过程数据流畅性方面的培训。

深度准备使那些最接近人工智能模型的人能够在模型输入和输出中出现道德挑战时做出反应。一旦出现潜在问题,这些违反道德的“第一反应者”可以帮助检查数据和结果。确保人工智能开发专业人员与商业价值观步调一致,并对人工智能技术施加人为约束,只会让值得信赖的系统激增。

将人情味应用于业务用例

人工智能在各行业开始出现

随着人工智能及其能力的不断发展和进步,每个行业都在关注生成性人工智能将如何改变我们的工作方式并改善业务成果。HITL的整合将重新定义人类专家在各个商业部门的作用。

由生成人工智能驱动的数字助理正在成为从医疗保健到金融等领域专业人士不可或缺的合作伙伴。这些智能助手提高了人类的生产力,促进了创造力、解决问题和精细决策。

具体影响

例如,及时准确的医疗数据解释在医疗保健中至关重要。医学专业人员与生成型人工智能助理合作,可以利用数据驱动的洞察力,同时将他们的临床专业知识带到最前沿。将人工智能的分析能力和人类专家的上下文理解相结合,可以实现更全面、更个性化的患者护理方法。

同样,在金融领域,HITL的集成确保了算法预测不仅会推动投资决策,而且会因人类专家的金融敏锐性和战略远见而丰富。这种协同效应最大限度地减少了与纯自动化经济系统相关的风险,同时最大限度地发挥了健全和合乎道德的财务决策的潜力。

通过人工辅助防止偏差、异常和扭曲数据

人工智能原则

在值得信赖的人工智能的更广泛背景下,透明度、问责制和道德考虑等核心原则走在了前列。当企业将越来越复杂的任务委托给生成型人工智能时,这些原则尤其重要。

由于人工智能模型的好坏取决于它们所提供的信息,IT领导者应该作为HITL框架的一部分仔细检查其神经网络的输入。了解哪些数据集和信息用于教授模型可以提高解释结果的能力,并进一步验证任何发现的可靠性。

HITL的关键

同样,能够逆向工程并理解见解、数据和答案是如何计算的,这是HITL框架的一个关键作用。仅凭生成性人工智能是不可能做到这一点的,它需要人类的帮助。

从本质上讲,人与人之间的接触成为关键,建立了一个制衡系统,防止意外的偏见、错误和道德问题。这种协作方法降低了自主决策的风险,并为负责任的人工智能开发创造了肥沃的土壤,确保技术与组织价值观无缝一致。

人工智能+人类:走向无限

人类专家和生成人工智能之间的合作不仅是一种降低风险和避免陷阱的机制,而且是创新和技术进步的推动者。

随着组织驾驭人工智能的未来,接受HITL范式将迎来一个负责任和协作进步的时代。人类专业知识和生成人工智能能力之间的复杂相互作用可以重塑创新和决策的格局,从而在不同行业带来前所未有的可能性和进步。

相关文章
|
22天前
|
人工智能 自然语言处理 数据可视化
AutoAgents:比LangChain更激进的AI开发神器!自然语言生成AI智能体军团,1句话搞定复杂任务
AutoAgents 是基于大型语言模型的自动智能体生成框架,能够根据用户设定的目标自动生成多个专家角色的智能体,通过协作完成复杂任务。支持动态生成智能体、任务规划与执行、多智能体协作等功能。
205 91
|
2月前
|
人工智能 算法 计算机视觉
【01】opencv项目实践第一步opencv是什么-opencv项目实践-opencv完整入门以及项目实践介绍-opencv以土壤和水滴分离的项目实践-人工智能AI项目优雅草卓伊凡
【01】opencv项目实践第一步opencv是什么-opencv项目实践-opencv完整入门以及项目实践介绍-opencv以土壤和水滴分离的项目实践-人工智能AI项目优雅草卓伊凡
151 63
【01】opencv项目实践第一步opencv是什么-opencv项目实践-opencv完整入门以及项目实践介绍-opencv以土壤和水滴分离的项目实践-人工智能AI项目优雅草卓伊凡
|
1月前
|
人工智能 物联网 开发者
Oumi:开源的AI模型一站式开发平台,涵盖训练、评估和部署模型的综合性平台
Oumi 是一个完全开源的 AI 平台,支持从 1000 万到 4050 亿参数的模型训练,涵盖文本和多模态模型,提供零样板代码开发体验。
269 43
Oumi:开源的AI模型一站式开发平台,涵盖训练、评估和部署模型的综合性平台
|
10天前
|
存储 人工智能 监控
Mahilo:多智能体实时协作框架开源!人类与AI无缝交互,复杂任务一键协同
Mahilo 是一个灵活的多智能体框架,支持创建与人类互动的多智能体系统,适用于从客户服务到紧急响应等多种场景。
65 2
Mahilo:多智能体实时协作框架开源!人类与AI无缝交互,复杂任务一键协同
|
1月前
|
机器学习/深度学习 人工智能 计算机视觉
MILS:无需对LLM进行额外训练就能处理多模态任务,Meta AI提出零样本生成多模态描述方法
MILS 是 Meta AI 推出的零样本生成高质量多模态描述方法,支持图像、视频和音频的描述生成,无需额外训练。
134 34
MILS:无需对LLM进行额外训练就能处理多模态任务,Meta AI提出零样本生成多模态描述方法
|
14天前
|
人工智能 算法 测试技术
OctoTools:斯坦福开源AI推理神器!16项测试准确率碾压GPT-4o,一键搞定复杂任务
OctoTools 是斯坦福大学推出的开源智能体框架,通过标准化工具卡片和自动化工具集优化算法,显著提升复杂推理任务的解决效率,支持多领域应用。
61 3
OctoTools:斯坦福开源AI推理神器!16项测试准确率碾压GPT-4o,一键搞定复杂任务
|
21天前
|
人工智能 Kubernetes 测试技术
SWE-Lancer:OpenAI发布衡量AI工程能力的「血汗标尺」!1400个百万美元任务实测,GPT-4o仅能赚2.9万刀?
SWE-Lancer 是 OpenAI 推出的基准测试,评估语言模型在自由职业软件工程任务中的表现,涵盖真实任务、端到端测试和多选项评估。
79 4
SWE-Lancer:OpenAI发布衡量AI工程能力的「血汗标尺」!1400个百万美元任务实测,GPT-4o仅能赚2.9万刀?
|
1月前
|
人工智能 自然语言处理 API
OpenDeepResearcher:开源 AI 研究工具,自动完成搜索、评估、提取和生成报告
OpenDeepResearcher 是一款开源 AI 研究工具,支持异步处理、去重功能和 LLM 驱动的决策,帮助用户高效完成复杂的信息查询和分析任务。
192 18
OpenDeepResearcher:开源 AI 研究工具,自动完成搜索、评估、提取和生成报告
|
1天前
|
Web App开发 人工智能 JavaScript
Nanobrowser:开源版OpenAI Operator!AI自动操控浏览器,复杂网页任务一键搞定
Nanobrowser 是一款开源的 Chrome 扩展工具,基于多智能体系统实现复杂的网页任务自动化,支持多种大型语言模型,完全免费且注重隐私保护。
72 1
|
2月前
|
人工智能 前端开发 程序员
通义灵码 AI 程序员全面上线,能和人类协作完成复杂开发任务
1 月 8 日消息,阿里云通义灵码 AI 程序员已全面上线,成为全球首个同时支持 VS Code、JetBrains IDEs 开发工具的 AI 程序员产品。此次上线的 AI 程序员相比传统 AI 辅助编程工具,能力更全面,可以让开发者以更高效、更沉浸的方式完成编码任务,通过全程对话协作的方式,就能完成从 0 到 1 的业务需求开发、问题修复、单元测试批量生成等复杂编码任务。
397 65

热门文章

最新文章