m基于yolov2深度学习的车辆检测系统matlab仿真,带GUI操作界面

简介: MATLAB 2022a中实现了YOLOv2目标检测算法的仿真,该算法从Darknet-19提取特征,以实时预测图像内目标的位置和类别。网络结构结合了网格划分、Anchor Boxes和多尺度预测,优化了边界框匹配。核心代码包括数据集划分、预训练ResNet-50加载、YOLOv2网络构建及训练。训练选项设置为GPU加速,使用'sgdm'优化器,200个周期进行训练。

1.算法仿真效果
matlab2022a仿真结果如下:

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg
7.jpeg
8.jpeg

2.算法涉及理论知识概要
YOLOv2是一种基于深度学习的实时目标检测算法,由Joseph Redmon等人在论文《YOLO9000: Better, Faster, Stronger》中提出。其主要特点是将图像识别任务视为一个回归问题,网络一次前向传播就能预测出图像中所有目标的位置和类别。
网络结构: YOLOv2采用Darknet-19作为特征提取网络,这是一种卷积神经网络(CNN),能有效抽取图像的深层特征。

    网格划分与Anchor Boxes: 将输入图像划分为SxS个网格,每个网格负责预测B个边界框(anchor boxes)。对于每个网格单元,网络输出T个类别概率(C类物体+C类背景)、B个边界框的坐标(x, y, w, h)以及每个框的置信度(confidence score),表示框内存在物体且预测框准确的程度。公式表示为:

   Confidence Score = IOU(pred_box, true_box) * Objectness Probability

其中IOU代表交并比,Objectness Probability是网络预测的框内存在物体的概率。

坐标预测与归一化: 边界框坐标预测使用相对坐标,公式如下:

x, y:预测框中心相对于网格单元的偏移量,范围[0, 1]。
w, h:预测框宽高相对于整幅图像宽高的比例,经过sigmoid激活后同样范围在[0, 1]。
损失函数: YOLOv2采用了一种复合损失函数,包括位置误差、分类误差以及置信度误差:

    Localization Loss: 对于每个网格单元,只有当它包含ground truth box的中心时,才对其负责预测的边界框计算定位误差,通常采用L1或L2损失。
   Confidence Loss: 包含物体的网格单元,其置信度损失是预测的置信度与真实IOU的交叉熵损失;不包含物体的网格单元,其置信度损失仅考虑背景类别的交叉熵损失。
   Classification Loss: 对于每个预测框,使用softmax函数处理类别概率,并计算多分类交叉熵损失。
    Batch Normalization: 在YOLOv2中广泛使用批量归一化层,加速训练过程,提高模型性能。

    Anchor Boxes优化: YOLOv2采用了K-means聚类方法优化预设锚框尺寸,使得锚框更好地匹配数据集中的物体形状。

    多尺度预测: YOLOv2通过在不同尺度的特征图上进行预测,提高了对不同尺寸目标的检测能力。

3.MATLAB核心程序
```sidx = randperm(size(FACES,1));% 打乱数据集索引
idx = floor(0.75 * length(sidx));% 将75%的数据用作训练集
train_data = FACES(sidx(1:idx),:);% 选取训练集
test_data = FACES(sidx(idx+1:end),:);% 选取测试集
% 图像大小
image_size = [224 224 3];
num_classes = size(FACES,2)-1;% 目标类别数量
anchor_boxes = [% 预定义的锚框大小
43 59
18 22
23 29
84 109
];
% 加载预训练的 ResNet-50 模型
load mat\Resnet50.mat

% 用于目标检测的特征层
featureLayer = 'activation_40_relu';
% 构建 YOLOv2 网络
lgraph = yolov2Layers(image_size,num_classes,anchor_boxes,Initial_nn,featureLayer);

options = trainingOptions('sgdm', ...
'MiniBatchSize', 8, ....
'InitialLearnRate',1e-4, ...
'MaxEpochs',200,...
'CheckpointPath', Folder, ...
'Shuffle','every-epoch', ...
'ExecutionEnvironment', 'gpu');% 设置训练选项
% 训练 YOLOv2 目标检测器
[detector,info] = trainYOLOv2ObjectDetector(train_data,lgraph,options);

save model.mat detector
```

相关文章
|
12天前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
65 9
|
11天前
|
传感器 算法 vr&ar
六自由度Stewart控制系统matlab仿真,带GUI界面
六自由度Stewart平台控制系统是一种高精度、高稳定性的运动模拟装置,广泛应用于飞行模拟、汽车驾驶模拟、虚拟现实等领域。该系统通过六个独立的线性致动器连接固定基座与移动平台,实现对负载在三维空间内的六个自由度(三维平移X、Y、Z和三维旋转-roll、pitch、yaw)的精确控制。系统使用MATLAB2022a进行仿真和控制算法开发,核心程序包括滑块回调函数和创建函数,用于实时调整平台的位置和姿态。
|
11天前
|
机器学习/深度学习 数据采集 存储
使用Python实现智能农业灌溉系统的深度学习模型
使用Python实现智能农业灌溉系统的深度学习模型
54 6
|
15天前
|
机器学习/深度学习 数据采集 算法框架/工具
使用Python实现智能生态系统监测与保护的深度学习模型
使用Python实现智能生态系统监测与保护的深度学习模型
47 4
|
20天前
|
机器学习/深度学习 存储 自然语言处理
深度学习之多轮对话系统
基于深度学习的多轮对话系统是一种能够在多轮对话中保持上下文连贯并生成自然回复的系统,主要用于客服、智能助理等需要交互式交流的场景。通过深度学习的技术,特别是自然语言处理中的预训练模型和序列生成模型,这类系统已在准确理解、生成自然语言的质量上取得显著进展。
47 2
|
12天前
|
安全 搜索推荐 机器学习/深度学习
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】在人工智能的推动下,个性化学习系统逐渐成为教育领域的重要趋势。深度学习作为AI的核心技术,在构建个性化学习系统中发挥关键作用。本文探讨了深度学习在个性化推荐系统、智能辅导系统和学习行为分析中的应用,并提供了代码示例,展示了如何使用Keras构建模型预测学生对课程的兴趣。尽管面临数据隐私和模型可解释性等挑战,深度学习仍有望为教育带来更个性化和高效的学习体验。
37 0
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
191 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
124 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
88 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度