薅羊毛!阿里云免费GPU云主机畅玩AI绘画,免费领取阿里云v100显卡搭建AI绘画利器Stable Diffusion

简介: 薅羊毛!阿里云免费GPU云主机畅玩AI绘画,免费领取阿里云v100显卡搭建AI绘画利器Stable Diffusion

AI绘画利器Stable Diffusion,因为对电脑显卡,磁盘,内存等都有一些限制,导致大部分人望而止步,所以小编今天教大家免费领取阿里云的免费显卡服务器,免费试用3个月,以方便各位快速学习与使用。

领取免费的GPU计算资源包

  1. 登录登录试用宝典网址,登录后点击试用宝典
  2. 领取右侧选择机器学习平台api,点击立即试用(PAI-DSW)
  3. 查看进入阿里云主页,费用-->用户中心,查看是否成功

    点击资源实例管理-->资源包

    看到以上资源表示领取已经成功,同时后期可在这里查看资源余量,和到期时间

开通机器学习PAI

  1. 返回领取的页面,开始试用;点击后进入机器学习PAI控制台。

  2. 点击开通PAI并创建默认工作空间
  3. 前往进入PAI控制台
  4. 点击交互式建模(DSW)
  5. 创建实例
  6. 选择免费gpu(资源包抵扣)

    支持抵扣PAI-DSW入门机型计算用量,抵扣规则:

    • A10_8vCPU机型:每使用1小时,消耗6.99计算时
    • G6_4vCPU机型:每使用1小时,消耗0.57计算时
    • V100_8vCPU机型:每使用1小时,消耗14.55计算时
      一定要选择带有资源包抵扣字样的GPU的资源,不然会额外扣费

  1. 创建数据集

    这里选择NAS文件系统,如果没有购买NAS文件系统,可以点击下图创建

    会跳到创建NAS文件系统界面,接着,创建文件系统

    选择通用型NAS

    创建好文件系统之后,返回数据集进行挂载
  2. 选择镜像url
  • 杭州地域:dsw-registry-vpc.cn-hangzhou.cr.aliyuncs.com/cloud-dsw/eas-service:aigc-torch113-cu117-ubuntu22.04-v0.2.1_accelerated
  • 北京地域:dsw-registry-vpc.cn-beijing.cr.aliyuncs.com/cloud-dsw/eas-service:aigc-torch113-cu117-ubuntu22.04-v0.2.1_accelerated
  • 上海地域:dsw-registry-vpc.cn-shanghai.cr.aliyuncs.com/cloud-dsw/eas-service:aigc-torch113-cu117-ubuntu22.04-v0.2.1_accelerated
  • 深圳地域:dsw-registry-vpc.cn-shenzhen.cr.aliyuncs.com/cloud-dsw/eas-service:aigc-torch113-cu117-ubuntu22.04-v0.2.1_accelerated

  1. 创建实例

    等待几分钟启动后 点击右侧操作中的打开,进入控制台

  2. 配置sd的webui环境

拖拽文件sd-webui-aki-aliyun-v4.ipynb到右侧。

依次点击格子+运行

访问webui

由于国内的不能访问civitai,我们可以通过hugging face下载模型。

下面是使用DreamShaper模型生成的图片

总体的感觉生成速度很快,画质也非常不错。

部署所需的文件:

链接:https://pan.baidu.com/s/1AaNI9jtwXCAvTG758PasSQ
提取码:f8dm

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
目录
相关文章
|
3月前
|
人工智能 中间件 数据库
沐曦 GPU 融入龙蜥,共筑开源 AI 基础设施新底座
沐曦自加入社区以来,一直与龙蜥社区在推动 AIDC OS 的开源社区建设等方面保持合作。
|
5月前
|
存储 机器学习/深度学习 人工智能
GPU云存储性能:加速AI与高性能计算的关键
在人工智能(AI)、机器学习(ML)和高性能计算(HPC)飞速发展的今天,数据存储和处理的效率已成为决定项目成败的关键因素。传统的云存储方案往往无法满足GPU密集型工作负载的需求,而GPU云存储性能的优化正成为企业提升计算效率、降低延迟的核心突破口。本文将深入探讨GPU云存储性能的重要性、关键技术及优化策略,助您在数据驱动的竞争中占据先机。
|
9月前
|
人工智能 并行计算 Linux
斯坦福黑科技让笔记本GPU也能玩转AI视频生成!FramePack:压缩输入帧上下文长度!仅需6GB显存即可生成高清动画
斯坦福大学推出的FramePack技术通过压缩输入帧上下文长度,解决视频生成中的"遗忘"和"漂移"问题,仅需6GB显存即可在普通笔记本上实时生成高清视频。
2200 19
斯坦福黑科技让笔记本GPU也能玩转AI视频生成!FramePack:压缩输入帧上下文长度!仅需6GB显存即可生成高清动画
|
3月前
|
人工智能 并行计算 PyTorch
以Lama Cleaner的AI去水印工具理解人工智能中经常会用到GPU来计算的CUDA是什么? 优雅草-卓伊凡
以Lama Cleaner的AI去水印工具理解人工智能中经常会用到GPU来计算的CUDA是什么? 优雅草-卓伊凡
308 4
|
5月前
|
存储 人工智能 编解码
阿里云GPU云服务器深度评测:算力怪兽如何重塑AI与图形处理的未来?
在AI与高性能计算需求激增的今天,传统CPU已难满足“暴力计算”需求。阿里云GPU云服务器依托NVIDIA顶级显卡算力,结合专为GPU优化的神行工具包(DeepGPU),为深度学习、科学计算、图形渲染等领域提供高效、弹性的算力支持。本文全面解析其产品优势、工具链及六大真实应用场景,助你掌握AI时代的算力利器。
阿里云GPU云服务器深度评测:算力怪兽如何重塑AI与图形处理的未来?
|
4月前
|
机器学习/深度学习 人工智能 容灾
硅谷GPU云托管:驱动AI革命的下一代计算基石
在人工智能与高性能计算席卷全球的今天,硅谷作为科技创新的心脏,正通过GPU云托管服务重新定义计算能力的边界。无论您是初创公司的机器学习工程师,还是跨国企业的研究团队,硅谷GPU云托管已成为实现突破性创新的关键基础设施。
|
9月前
|
机器学习/深度学习 并行计算 PyTorch
英伟达新一代GPU架构(50系列显卡)PyTorch兼容性解决方案
本文记录了在RTX 5070 Ti上运行PyTorch时遇到的CUDA兼容性问题,分析其根源为预编译二进制文件不支持sm_120架构,并提出解决方案:使用PyTorch Nightly版本、更新CUDA工具包至12.8。通过清理环境并安装支持新架构的组件,成功解决兼容性问题。文章总结了深度学习环境中硬件与框架兼容性的关键策略,强调Nightly构建版本和环境一致性的重要性,为开发者提供参考。
5456 64
英伟达新一代GPU架构(50系列显卡)PyTorch兼容性解决方案
|
6月前
|
人工智能 运维 Serverless
GPU 降成本免运维,睿观 AI 助手选择函数计算
从跨境电商 ERP 到“睿观 AI 助手”,阿里云函数计算的支持下,深圳三态股份利用 AI 技术快速完成专利、商标、版权等多维度的侵权风险全面扫描。结合函数计算实现弹性算力支持,降低成本并提升效率,实现业务的快速发展。
|
11月前
|
人工智能 Linux iOS开发
exo:22.1K Star!一个能让任何人利用日常设备构建AI集群的强大工具,组成一个虚拟GPU在多台设备上并行运行模型
exo 是一款由 exo labs 维护的开源项目,能够让你利用家中的日常设备(如 iPhone、iPad、Android、Mac 和 Linux)构建强大的 AI 集群,支持多种大模型和分布式推理。
2645 101