【算法与数据结构】二叉树(前中后)序遍历1

简介: 【算法与数据结构】二叉树(前中后)序遍历

📝前言

一棵二叉树是结点的一个有限集合,该集合:

  1. 或者为空
  2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

二叉树可以没有节点(空树)否则,它包含一个根节点,这个根节点最多可以有两个分支:左子树和右子树,左右子树也符合二叉树的定义,可以是空树,或者由根节点和其左右子树组成。

因此二叉树的定义采用的是递归的思想:一个二叉树要么为空,要么由根节点和其左右两个子二叉树组成。左右子树本身也符合二叉树的定义,可以递归定义下去。


本小节我们将学习二叉树的前中后序遍历!


🌠 创建简单二叉树

在学习二叉树的基本操作之前,需要先创建一棵二叉树,然后才能学习相关的基本操作。由于现在大家对二叉树结构的理解还不够深入,为了降低学习成本,这里手动快速创建一棵简单的二叉树,以便快速进入二叉树操作学习。等大家对二叉树结构有了一定了解之后,再深入研究二叉树的真正创建方式。

手插简单二叉树代码:

// 二叉树节点结构体定义
typedef struct BinTreeNode
{
  // 左子节点指针
  struct BinTreeNode* left;

  // 右子节点指针
  struct BinTreeNode* right;

  // 节点值
  int val;
}BTNode;

// 创建节点,分配内存并返回
BTNode* BuyBTNode(int val)
{
  BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));

  // 空间分配失败
  if (newnode == NULL)
  {
    perror("malloc fail");
    return NULL;
  }

  // 初始化节点值
  newnode->val = val;

  // 初始化左右子节点为NULL
  newnode->left = NULL;
  newnode->right = NULL;

  return newnode;
}

// 创建示例树
BTNode* CreateTree()
{
  // 创建节点1-6
  BTNode* n1 = BuyBTNode(1);
  BTNode* n2 = BuyBTNode(2);
  BTNode* n3 = BuyBTNode(3);
  BTNode* n4 = BuyBTNode(4);
  BTNode* n5 = BuyBTNode(5);
  BTNode* n6 = BuyBTNode(6);

  // 构建树结构
  n1->left = n2;
  n1->right = n4;
  n2->left = n3;
  n4->left = n5;
  n4->right = n6;

  return n1; // 返回根节点
}

二叉树的图像:

注意:上述代码并不是创建二叉树的方式,真正创建二叉树方式后序详解重点讲解。

🌉二叉树的三种遍历

学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。


🌠前序

您说得对,我来补充一下前序遍历的注释:

前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。

算法:

访问根节点 -> 前序遍历左子树 -> 前序遍历右子树

  • 即先访问根节点,然后遍历其左子树,再遍历其右子树。

注意:

递归基准条件是当根节点为NULL时返回。访问根节点要放在递归左右子树之前,这保证了根节点一定先于其子节点被访问。递归左子树和右子树的顺序不能调换,否则就不是前序遍历了。

代码:

vvoid PreOrder(BTNode* root)
{
  if (root == NULL)
  {
    printf("N ");
    return;
  }

  printf("%d ", root->val);
  PreOrder(root->left);
  PreOrder(root->right);
}
int main()
{
  BTNode* root = CreateTree();
  PreOrder(root);
  printf("\n");
}

前序递归图解:

运行:

🌉中序遍历

中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。中序遍历是在遍历一个结点的左子树后,然后访问这个结点,最后遍历它的右子树。

void InOrder(BTNode* root)
{
  if (root == NULL)
  {
    printf("N ");
    return;
  }

  InOrder(root->left);
  printf("%d ", root->val);
  InOrder(root->right);
}

【算法与数据结构】二叉树(前中后)序遍历2:https://developer.aliyun.com/article/1474433

相关文章
|
28天前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
63 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
3天前
|
存储 缓存 算法
如何提高二叉树遍历算法的效率?
选择合适的遍历算法,如按层次遍历树时使用广度优先搜索(BFS),中序遍历二叉搜索树以获得有序序列。优化数据结构,如使用线索二叉树减少空指针判断,自定义节点类增加辅助信息。利用递归与非递归的特点,避免栈溢出问题。多线程并行遍历提高速度,注意线程安全。缓存中间结果,避免重复计算。预先计算并存储信息,提高遍历效率。综合运用这些方法,提高二叉树遍历算法的效率。
16 5
|
16小时前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
8天前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
41 8
|
3天前
|
算法
树的遍历算法有哪些?
不同的遍历算法适用于不同的应用场景。深度优先搜索常用于搜索、路径查找等问题;广度优先搜索则在图的最短路径、层次相关的问题中较为常用;而二叉搜索树的遍历在数据排序、查找等方面有重要应用。
9 2
|
6天前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
14 0
|
24天前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
31 4
|
30天前
|
机器学习/深度学习 搜索推荐 算法
探索数据结构:初入算法之经典排序算法
探索数据结构:初入算法之经典排序算法
|
9天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
75 9
|
2天前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。
下一篇
无影云桌面