从动态规划到贪心算法:最长递增子序列问题的方法全解析

本文涉及的产品
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介: 从动态规划到贪心算法:最长递增子序列问题的方法全解析



题型简介

经典例题:300. 最长递增子序列 - 力扣(LeetCode)

最长递增子序列(Longest Increasing subsequence,LIS)是一个经典的问题。最长递增子序列是指在一个序列中,以不下降的顺序连续排列的一系列元素的子序列。这个子序列的长度就是最长递增子序列的长度。

题解代码

虽然注释详细,但与后文解题思路对应食用风味更佳~

#include <iostream>
#include <vector>
 
using namespace std;
 
int lengthOfLIS(vector<int>& nums) 
{
    // 如果输入序列为空,返回 0
    if (nums.empty()) 
    {
        return 0;
    }
 
    // 定义 dp 数组,长度为输入序列的长度
    int dp[nums.size()];
    // 初始化 dp 数组,将所有元素初始化为 1
    for (int i = 0; i < nums.size(); i++) 
    {
        dp[i] = 1;
    }
 
    // 记录最长递增子序列的长度
    int maxn = 1;
 
    // 遍历输入序列,从第 2 个元素开始,因为第一个元素的 dp[0] 一定是 1
    for (int i = 1; i < nums.size(); i++) 
    {
        // 遍历之前的元素,找到满足条件的索引 j
        for (int j = 0; j < i; j++) 
        {
            // 如果当前元素小于之前的元素,并且之前元素的最长递增子序列长度加 1 大于当前元素的最长递增子序列长度
            if ((nums[j] < nums[i]) && (dp[j] + 1 > dp[i])) 
            {
                // 更新当前元素的最长递增子序列长度为之前元素的最长递增子序列长度加 1
                // 因为if条件是nums[j] < nums[i],所以当前i位置的num一定是可以往j位置的数字后拼接作为递增子序列的
                // 所以更新当前i的dp作为新的当前dp[i]
                dp[i] = dp[j] + 1;
            }
        }
 
        // 在与每次遍历完当前i的j后更新的dp[i]与之前的maxn作对比
        // 得到当前最长递增子序列的长度
        if (dp[i] > maxn) 
        {
            maxn = dp[i];
        }
    }
 
    // 返回最长递增子序列的长度
    return maxn;
}
 
int main() 
{
    vector<int> nums = { 10, 9, 2, 5, 3, 7, 101, 18 };
    // 输出:4
    cout << lengthOfLIS(nums) << endl;
 
    return 0;
}

解题思路

1. 贪心策略(Greedy algorithms):

贪心算法的核心是以少博多,以最优解为目标

贪心策略是选择当前未处理元素中最小的元素,将其添加到最长递增子序列的末尾。这种策略的基本思想是尽可能地选择较小的元素,以保证子序列的递增性。

在代码中,我们通过比较当前元素 nums[i] 和之前元素 nums[j]j < i)的大小来更新最长递增子序列的长度。如果 nums[j] < nums[i],并且 dp[j] + 1 > dp[i],我们就选择 nums[j] 作为最长递增子序列的一部分,并更新 dp[i]dp[j] + 1

2. 动态规划(Dynamic programming):

动态规划是一种通过将问题分解为子问题来解决问题的方法。在最长递增子序列问题中,动态规划的基本思想是通过递推公式来计算每个元素的最长递增子序列长度。

在代码中,我们使用了一个长度为 nums.size() 的数组 dp 来存储每个元素的最长递增子序列长度。递推公式为 dp[i] = max(dp[j] + 1, dp[i]),其中 j < i 表示之前的元素。通过递推公式,我们可以逐步计算出每个元素的最长递增子序列长度。

剔骨刀(精细点)

    for (int i = 1; i < nums.size(); i++) 
    {
        for (int j = 0; j < i; j++) 
        {
            if ((nums[j] < nums[i]) && (dp[j] + 1 > dp[i])) 
            {
                dp[i] = dp[j] + 1;
            }
        }
 
        if (dp[i] > maxn) 
        {
            maxn = dp[i];
        }
    }

动态规划问题难点在于它的递推公式理解。

这里的 (nums[j] < nums[i]) && (dp[j] + 1 > dp[i]) 中的 dp[j] 可以当做前面已经在该下标上取得的最长递增子序列的个数,因为if条件(nums[j] < nums[i]) && (dp[j] + 1 > dp[i]),当条件通过时说明当前 i 位置的num一定是可以往j位置的数字后拼接作为递增子序列的,所以dp[j] + 1的意思就是说,只要在if条件内他都可以拼接,但是如果dp[j] + 1都小于dp[i]的话,那么它就不是最长子序列了,不会进行 +1 ,保留原来的 dp[i] 大小。  


目录
相关文章
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
117 4
|
9天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
143 80
|
3月前
|
人工智能
歌词结构的巧妙安排:写歌词的方法与技巧解析,妙笔生词AI智能写歌词软件
歌词创作是一门艺术,关键在于巧妙的结构安排。开头需迅速吸引听众,主体部分要坚实且富有逻辑,结尾则应留下深刻印象。《妙笔生词智能写歌词软件》提供多种 AI 功能,帮助创作者找到灵感,优化歌词结构,写出打动人心的作品。
|
22天前
|
安全 Ubuntu Shell
深入解析 vsftpd 2.3.4 的笑脸漏洞及其检测方法
本文详细解析了 vsftpd 2.3.4 版本中的“笑脸漏洞”,该漏洞允许攻击者通过特定用户名和密码触发后门,获取远程代码执行权限。文章提供了漏洞概述、影响范围及一个 Python 脚本,用于检测目标服务器是否受此漏洞影响。通过连接至目标服务器并尝试登录特定用户名,脚本能够判断服务器是否存在该漏洞,并给出相应的警告信息。
143 84
|
3天前
|
数据可视化 项目管理
个人和团队都好用的年度复盘工具:看板与KPT方法解析
本文带你了解高效方法KPT复盘法(Keep、Problem、Try),结合看板工具,帮助你理清头绪,快速完成年度复盘。
31 7
个人和团队都好用的年度复盘工具:看板与KPT方法解析
|
3天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
1月前
|
机器学习/深度学习 人工智能 PyTorch
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
本文探讨了Transformer模型中变长输入序列的优化策略,旨在解决深度学习中常见的计算效率问题。文章首先介绍了批处理变长输入的技术挑战,特别是填充方法导致的资源浪费。随后,提出了多种优化技术,包括动态填充、PyTorch NestedTensors、FlashAttention2和XFormers的memory_efficient_attention。这些技术通过减少冗余计算、优化内存管理和改进计算模式,显著提升了模型的性能。实验结果显示,使用FlashAttention2和无填充策略的组合可以将步骤时间减少至323毫秒,相比未优化版本提升了约2.5倍。
50 3
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
|
21天前
|
存储 Java 开发者
浅析JVM方法解析、创建和链接
上一篇文章《你知道Java类是如何被加载的吗?》分析了HotSpot是如何加载Java类的,本文再来分析下Hotspot又是如何解析、创建和链接类方法的。
|
1月前
|
负载均衡 网络协议 算法
Docker容器环境中服务发现与负载均衡的技术与方法,涵盖环境变量、DNS、集中式服务发现系统等方式
本文探讨了Docker容器环境中服务发现与负载均衡的技术与方法,涵盖环境变量、DNS、集中式服务发现系统等方式,以及软件负载均衡器、云服务负载均衡、容器编排工具等实现手段,强调两者结合的重要性及面临挑战的应对措施。
77 3
|
2月前
|
存储 算法 安全
SnowflakeIdGenerator-雪花算法id生成方法
SnowflakeIdGenerator-雪花算法id生成方法
25 1

推荐镜像

更多