【python】python国内社会消费品零售总额数据分析(代码+数据+报告)【独一无二】

简介: 【python】python国内社会消费品零售总额数据分析(代码+数据+报告)【独一无二】


👉博__主👈:米码收割机

👉技__能👈:C++/Python语言

👉公众号👈:测试开发自动化

👉荣__誉👈:阿里云博客专家博主、51CTO技术博主

👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。



摘要

本报告基于提供的数据和代码,对5月份社会消费品零售总额进行了数据挖掘和分析,旨在深入了解消费市场的现状和趋势。报告主要分为三个部分:消费品零售额占比分析、城镇和乡村消费品零售额分析以及消费品类别分析。

在消费品零售额占比分析中,通过饼状图展示了社会消费品零售总额和除汽车以外的消费品零售额之间的比例关系。结果显示,除汽车以外的消费品零售额占比较大,约占总额的89.5%。这表明消费市场的主要关注点是非汽车消费品。

城镇和乡村消费品零售额分析揭示了两者之间的差异。据数据显示,城镇消费品零售额远高于乡村,城镇消费品零售额达到32906亿元,而乡村消费品零售额为4897亿元。这反映了城镇地区消费市场的活跃程度和经济发展水平相对较高。

消费品类别分析通过饼状图和折线图展示了不同消费品类别的销售额情况。饼状图显示了不同类别在商品零售额中的占比,其中服装、鞋帽、针纺织品类和家用电器和音像器材类的销售额占比较大。折线图展示了各类别销售额的趋势,汽车类的销售额呈现明显的增长趋势。


一、引言

随着社会经济的发展和人们生活水平的提高,消费市场的规模和重要性不断扩大。对消费市场的深入了解和准确把握对于政府部门、企业决策者和市场参与者制定有效的战略和政策至关重要。为此,本报告基于提供的数据和代码,对2023年5月份社会消费品零售总额进行了数据挖掘和分析,以揭示消费市场的现状和趋势。

本报告的分析主要围绕三个方面展开。首先,我们通过消费品零售额占比分析,深入了解了社会消费品零售总额及除汽车以外的消费品零售额之间的关系。此分析利用饼状图展示了各类别占总额的比例,揭示了非汽车消费品在整体消费市场中的占比情况。其次,我们进行了城镇和乡村消费品零售额分析,以揭示城镇和乡村消费市场的差异。通过柱状图的形式展示了两者的销售额对比,为我们了解不同地区的消费市场活跃程度提供了重要线索。最后,我们对消费品类别进行了分析,通过饼状图和折线图展示了不同消费品类别的销售额情况。这些分析结果可以帮助我们了解各类别在商品零售额中的占比和销售额的趋势,从而洞察消费市场的结构和变化。


二、消费品零售额占比分析

消费品零售额占比分析是了解社会消费市场中各类别消费品的重要性和占比情况的关键分析方法。在本报告中,我们利用提供的数据,进行了消费品零售额占比分析,以揭示社会消费品零售总额和除汽车以外的消费品零售额之间的比例关系。

import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
# 读取Excel文件
df = pd.read_excel("2023年5月份社会消费品零售总额.xlsx", engine='openpyxl')
# 1. 消费品零售额占比分析
total_retail = df.loc[df["指 标"] == "社会消费品零售总额", "5月绝对量(亿元)"].values[0]
other_retail = df.loc[df["指 标"] == "除汽车以外的消费品零售额", "5月绝对量(亿元)"].values[0]

根据提供的数据,我们得知社会消费品零售总额为37803亿元,除汽车以外的消费品零售额为33875亿元。为了更直观地了解两者之间的占比关系,我们使用饼状图进行可视化呈现。

部分代码:

labels = ["社会消费品零售总额", "除汽车以外的消费品零售额"]
sizes = [total_retail, other_retail]
plt.pie(sizes, labels=labels, autopct='%1.1f%%')
plt.axis('equal')
plt.title("消费品零售额占比")
plt.show()

从饼状图中可以清晰地看出社会消费品零售总额和除汽车以外的消费品零售额之间的比例关系。根据图中数据,除汽车以外的消费品零售额占总额的89.5%,而汽车消费品零售额占比较小,约占总额的10.5%。

这一分析结果表明,除汽车以外的消费品在社会消费市场中占据了绝大部分的比重。这可能反映出汽车作为一项大额消费品,在整体消费市场中所占比例相对较小。同时,这也暗示着社会消费者更加关注其他消费品类别,如日常生活用品、服装、家电等。


三、城镇和乡村消费品零售额分析

城镇和乡村消费品零售额分析是了解不同地区消费市场特征和差异的重要分析方法。根据提供的数据,我们得知城镇消费品零售额为32906亿元,乡村消费品零售额为4897亿元。为了更好地了解城镇和乡村消费品零售额的差异,我们使用柱状图进行可视化呈现。

部分代码:

x = ["城镇", "乡村"]
y = [urban_retail, rural_retail]
plt.bar(x, y)
plt.title("城镇和乡村消费品零售额")
plt.xlabel("地区")
plt.ylabel("销售额(亿元)")
plt.show()

通过柱状图可以直观地比较城镇和乡村消费品零售额的大小差异。根据图中数据,城镇消费品零售额明显高于乡村,城镇消费品零售额为32906亿元,而乡村消费品零售额为4897亿元。


四、消费品类别分析

消费品类别分析是了解不同消费品类别在整体商品零售额中的占比和销售额变化趋势的重要分析方法。根据提供的数据,我们可以对不同消费品类别的销售额进行详细分析,并通过绘制饼状图和折线图展示结果。

首先,我们通过饼状图展示了不同消费品类别在商品零售额中的占比情况。

部分代码:

# 绘制饼状图
plt.pie(retail_values, labels=categories[:len(retail_values)], autopct='%1.1f%%')
plt.axis('equal')
plt.title("不同消费品类别在商品零售额中的占比")
plt.show()

从饼状图中可以清晰地看出各个消费品类别在商品零售额中的占比情况。根据图中数据,服装、鞋帽、针纺织品类和家用电器和音像器材类的销售额占比较大,分别为6.4%和5.2%。这表明这些消费品类别在整体商品零售市场中具有重要地位,受到消费者的广泛关注和购买。

其次,我们通过折线图展示了不同消费品类别的销售额变化趋势。

plt.plot(categories[:len(retail_values)], retail_values, marker='o')
plt.title("不同消费品类别的销售额")
plt.xlabel("消费品类别")
plt.ylabel("销售额(亿元)")
plt.xticks(rotation=90)
plt.show()

从折线图中可以观察到不同消费品类别的销售额呈现出不同的趋势和变化。其中,汽车类的销售额呈现出明显的上升趋势,表明消费者对汽车的需求持续增长。然而,粮油、食品类和石油及制品类的销售额则呈现出下降的趋势,这可能受到市场供需和价格等因素的影响。


五、总结

本报告基于提供的数据和代码,通过消费品零售额占比分析、城镇和乡村消费品零售额分析以及消费品类别分析,对5月份社会消费品零售总额进行了深入挖掘和分析。以下是对每个分析部分的主要发现和总结:(略)


相关文章
|
2天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
2天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
7 1
|
2天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
5天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
11 2
|
2天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!
|
2天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
4天前
|
设计模式 算法 搜索推荐
Python编程中的设计模式:优雅解决复杂问题的钥匙####
本文将探讨Python编程中几种核心设计模式的应用实例与优势,不涉及具体代码示例,而是聚焦于每种模式背后的设计理念、适用场景及其如何促进代码的可维护性和扩展性。通过理解这些设计模式,开发者可以更加高效地构建软件系统,实现代码复用,提升项目质量。 ####
|
3天前
|
机器学习/深度学习 存储 算法
探索Python编程:从基础到高级应用
【10月更文挑战第38天】本文旨在引导读者从Python的基础知识出发,逐渐深入到高级编程概念。通过简明的语言和实际代码示例,我们将一起探索这门语言的魅力和潜力,理解它如何帮助解决现实问题,并启发我们思考编程在现代社会中的作用和意义。
|
2天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
3天前
|
机器学习/深度学习 数据挖掘 开发者
Python编程入门:理解基础语法与编写第一个程序
【10月更文挑战第37天】本文旨在为初学者提供Python编程的初步了解,通过简明的语言和直观的例子,引导读者掌握Python的基础语法,并完成一个简单的程序。我们将从变量、数据类型到控制结构,逐步展开讲解,确保即使是编程新手也能轻松跟上。文章末尾附有完整代码示例,供读者参考和实践。