【MATLAB】GA_BP神经网络回归预测算法

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 【MATLAB】GA_BP神经网络回归预测算法

【MATLAB】GA_BP神经网络回归预测算法(适用光伏发电回归预测等)

有意向获取代码,请转文末观看代码获取方式~

1 基本定义

GA_BP神经网络回归预测算法是一种将遗传算法(Genetic Algorithm, GA)与反向传播神经网络(Back Propagation Neural Network, BPNN)结合的优化算法,用于解决回归预测问题。以下是该算法的理论基础的详细介绍:

  1. 遗传算法(Genetic Algorithm, GA): 遗传算法是一种模拟进化过程的优化算法,基于生物进化的原理,通过模拟自然选择、交叉和变异等操作,逐步优化解空间中的解。GA包括种群初始化、选择、交叉、变异和适应度评价等步骤,通过不断迭代,逐步找到最优解。
  2. 反向传播神经网络(Back Propagation Neural Network, BPNN): 反向传播神经网络是一种常见的人工神经网络模型,由输入层、隐藏层和输出层构成,通过前向传播和反向传播算法不断调整网络参数,以最小化损失函数,实现模型的训练和预测。BPNN具有较强的非线性拟合能力,适用于各种回归预测问题。
  3. GA_BP神经网络回归预测算法: GA_BP算法将GA和BPNN结合,通过GA优化BPNN的权重和偏置参数,以提高BPNN的训练效率和预测性能。具体步骤如下:
  • 初始化种群:随机生成一定数量的个体,每个个体代表一个BPNN的参数组合。
  • 适应度评价:根据BPNN在训练集上的预测误差,计算每个个体的适应度。
  • 选择操作:根据适应度大小,选择优秀的个体作为父代。
  • 交叉和变异:对父代进行交叉和变异操作,生成新的子代。
  • 更新种群:根据新的子代替换原有种群。
  • 反向传播训练:使用更新后的个体参数训练BPNN模型。
  • 重复迭代:重复以上步骤,直到达到停止条件。
  1. 算法优势:
  • 综合利用了遗传算法和反向传播神经网络的优势,克服了各自算法的局限性,提高了算法的全局搜索能力和收敛速度。
  • GA_BP算法能够在大规模数据集下有效处理复杂的回归预测问题,具有较强的泛化能力。
  • 通过遗传算法的优化,可以避免BPNN陷入局部最优解,提高了模型的鲁棒性和稳定性。
  1. 算法应用:
  • GA_BP神经网络回归预测算法在金融、医疗、工业生产等领域具有广泛的应用。例如,用于股票价格预测、疾病诊断、生产过程优化等。
  • 该算法也可用于时间序列预测、趋势分析、数据拟合等方面,能够有效处理非线性、高维度的数据问题。

总之,GA_BP神经网络回归预测算法是一种有效的优化算法,通过结合遗传算法和反向传播神经网络,能够提高回归预测模型的性能和泛化能力,适用于各种复杂的回归预测问题。算法的理论基础和实践应用使得其在数据建模和预测领域具有重要的研究和应用价值。通过GA_BP神经网络回归预测算法,可以充分利用GA的全局搜索和BPNN的非线性拟合能力,有效地优化神经网络模型,提高回归预测的准确性和泛化能力。算法理论基础的结合使得GA_BP算法在回归预测问题中具有较好的性能表现。

2 出图效果

附出图效果如下:

附视频教程操作:

3 代码获取

【MATLAB】GA_BP神经网络回归预测算法

https://mbd.pub/o/bread/ZZ2alp1u

200 种 MATLAB 算法及绘图合集

https://www.aliyundrive.com/s/9GrH3tvMhKf

提取码: f0w7

关于代码有任何疑问,均可关注公众号(Lwcah)后,获取 up 的个人【微信号】,添加微信号后可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~


目录
相关文章
|
5天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
13天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
14天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
8天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
36 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
14天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
14天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
34 3
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
19天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
2月前
|
算法
基于GA遗传优化的TSP问题最优路线规划matlab仿真
本项目使用遗传算法(GA)解决旅行商问题(TSP),目标是在访问一系列城市后返回起点的最短路径。TSP属于NP-难问题,启发式方法尤其GA在此类问题上表现出色。项目在MATLAB 2022a中实现,通过编码、初始化种群、适应度评估、选择、交叉与变异等步骤,最终展示适应度收敛曲线及最优路径。
151 29
|
1月前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
下一篇
无影云桌面