python并发编程:使用多进程multiprocessing模块加速程序的运行

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: python并发编程:使用多进程multiprocessing模块加速程序的运行

往期文章:

  1. 并发编程简介
  2. 怎样选择多线程多进程多协程
  3. Python速度慢的罪魁祸首,全局解释器锁GIL
  4. 使用多线程,Python爬虫被加速10倍
  5. Python实现生产者消费者爬虫
  6. Python线程安全问题以及解决方案
  7. Python好用的线程池ThreadPoolExecutor
  8. Python使用线程池在Web服务中实现加速

有了多线程threading,为什么还要用多进程multiprocessing

如果遇到了CPU密集型计算,多线程反而会降低执行速度。mutilprocessing模块就是python为了解决GIL缺陷引入的一个模块,原理是用多进程在多CPU上并行执行。

上图的上面展示的是一个多线程执行的过程,主要通过并行IO和CPU来提高执行速度,但是对于CPU密集型运算,即上图的下面部分,一直都需CPU计算,则线程的切换耽误时间,导致多线程反而没有多线程速度快。

对比多线程和多进程的实现

代码演示

这里判断100个大数 是否为素数?分别对比了单线程,多线程,多进程的效率。

import math
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
import time

num_list = [112272535095293] * 100

def is_prime(num):

    """
    判断是不是素数
    """
    if num < 2:
        return False

    if num == 2:
        return True

    if num % 2 == 0:
        return False
    sqrt_n  = int(math.floor(math.sqrt(num)))

    for i in range(3,sqrt_n+1,2):
        if num % i == 0:
            return False
    return True

# 单线程
def single_thread():
    for num in num_list:
        is_prime(num)

#多线程
def multi_thread():
    with ThreadPoolExecutor() as pool:
        pool.map(is_prime,num_list)

# 多进程
def multi_process():
    with ProcessPoolExecutor() as pool:
        pool.map(is_prime,num_list)

if __name__ == "__main__":
    start = time.time()
    single_thread()
    end = time.time()
    print('单线程:', end - start, '秒')

    start = time.time()
    multi_thread()
    end = time.time()
    print('多线程:', end - start, '秒')


    start = time.time()
    multi_process()
    end = time.time()
    print('多进程', end - start, '秒')

运行结果如下:

目录
相关文章
|
2月前
|
人工智能 Linux 开发工具
Python从零到一:手把手带你写出第一个实用程序
Python语法简洁易懂,适合编程新手入门。它广泛应用于人工智能、自动化办公、Web开发等领域。学习Python可快速搭建项目,拥有丰富库支持和强大社区资源。通过本教程,你将掌握基础语法、环境搭建、程序逻辑控制及实战项目开发,开启编程之旅。
195 0
|
11天前
|
设计模式 决策智能 Python
Python条件控制:让程序学会"思考"的魔法
本文深入浅出地讲解Python条件控制,从基础if语句到多分支、嵌套结构,再到简洁的三元表达式与Python 3.10新增的match-case模式匹配,结合电商折扣、会员等级、ATM系统等实战案例,全面掌握程序“智能决策”的核心逻辑。
172 0
|
3月前
|
监控 编译器 Python
如何利用Python杀进程并保持驻留后台检测
本教程介绍如何使用Python编写进程监控与杀进程脚本,结合psutil库实现后台驻留、定时检测并强制终止指定进程。内容涵盖基础杀进程、多进程处理、自动退出机制、管理员权限启动及图形界面设计,并提供将脚本打包为exe的方法,适用于需持续清理顽固进程的场景。
|
4月前
|
PyTorch 算法框架/工具 C++
人工智能算法python程序运行环境安装步骤整理
本教程详细介绍Python与AI开发环境的配置步骤,涵盖软件下载、VS2017安装、Anaconda配置、PyCharm设置及组件安装等内容,适用于Windows系统,助你快速搭建开发环境。
|
5月前
|
人工智能 并行计算 开发者
CUDA重大更新:原生Python可直接编写高性能GPU程序
NVIDIA在2025年GTC大会上宣布CUDA并行计算平台正式支持原生Python编程,消除了Python开发者进入GPU加速领域的技术壁垒。这一突破通过重新设计CUDA开发模型,引入CUDA Core、cuPyNumeric、NVMath Python等核心组件,实现了Python与GPU加速的深度集成。开发者可直接用Python语法进行高性能并行计算,显著降低门槛,扩展CUDA生态,推动人工智能、科学计算等领域创新。此更新标志着CUDA向更包容的语言生态系统转型,未来还将支持Rust、Julia等语言。
376 3
CUDA重大更新:原生Python可直接编写高性能GPU程序
|
4月前
|
机器学习/深度学习 前端开发 API
python3如何使用QT编写基础的对话框程序
Qt与Python结合形成了PyQt/PySide,为桌面应用开发提供强大支持。通过简单安装PyQt5或PySide6,开发者可快速搭建跨平台GUI应用。本文从创建基础对话框入手,介绍布局管理、信号与槽机制、对话框模式及样式表美化等核心功能,并探讨模态窗口、事件驱动编程和资源打包等内容。最后,引导读者探索模型视图架构、多线程处理等进阶技术,逐步掌握用Python+Qt开发高效桌面应用的技能。
122 0
|
7月前
|
Python
[oeasy]python074_ai辅助编程_水果程序_fruits_apple_banana_加法_python之禅
本文回顾了从模块导入变量和函数的方法,并通过一个求和程序实例,讲解了Python中输入处理、类型转换及异常处理的应用。重点分析了“明了胜于晦涩”(Explicit is better than implicit)的Python之禅理念,强调代码应清晰明确。最后总结了加法运算程序的实现过程,并预告后续内容将深入探讨变量类型的隐式与显式问题。附有相关资源链接供进一步学习。
99 4
|
8月前
|
数据采集 Java 数据处理
Python实用技巧:轻松驾驭多线程与多进程,加速任务执行
在Python编程中,多线程和多进程是提升程序效率的关键工具。多线程适用于I/O密集型任务,如文件读写、网络请求;多进程则适合CPU密集型任务,如科学计算、图像处理。本文详细介绍这两种并发编程方式的基本用法及应用场景,并通过实例代码展示如何使用threading、multiprocessing模块及线程池、进程池来优化程序性能。结合实际案例,帮助读者掌握并发编程技巧,提高程序执行速度和资源利用率。
363 0
|
安全 Java 数据处理
Python网络编程基础(Socket编程)多线程/多进程服务器编程
【4月更文挑战第11天】在网络编程中,随着客户端数量的增加,服务器的处理能力成为了一个重要的考量因素。为了处理多个客户端的并发请求,我们通常需要采用多线程或多进程的方式。在本章中,我们将探讨多线程/多进程服务器编程的概念,并通过一个多线程服务器的示例来演示其实现。
|
Python
python Process 多进程编程
python Process 多进程编程
135 1

推荐镜像

更多