【Python】GPU内存监控脚本

简介: 【Python】GPU内存监控脚本

相信很多小伙伴在项目中,需要监控GPU的使用状态,打开任务管理器,你会发现可以显示GPU的运行状态,但是无法将这些数据保留下来,这里我制作了python脚本用于监控专用GPU的使用情况!我使用的显卡是NVIDIA GeForce GTX 1660 Ti。、

(关注“测试开发自动化” 弓中皓,获取更多学习内容)

任务管理器中的专用GPU内存和共享GPU内存的含义是什么呢?

(1)专用GPU内存

分为两种情况:独显(独立显卡)和 集显(集成显卡)

独显:是指单独的GPU PCIe卡,专有GPU内存就是指该GPU显卡上自带的内存,它只能够被GPU使用,而且带宽很高,延迟很小。

集显:BIOS把一部分内存在内存初始化后保留下来给GPU专用

(2)共享GPU内存

是操作系统Windows从系统内存中划出来,优先给GPU使用的内存

(3)GPU内存

GPU内存=专用GPU内存+共享GPU内存

二、python代码实现

#!/usr/bin/python
# -*- coding: utf-8 -*-

import time
import pynvml
from matplotlib import pyplot as plt
import matplotlib.backends.backend_tkagg


class GPUMonitor(object):
    def __init__(self, sleep_time):
        pynvml.nvmlInit()
        pynvml.nvmlSystemGetDriverVersion()
        self.GPUCounts = pynvml.nvmlDeviceGetCount()
        self.GPU_counts_list = [[]] * self.GPUCounts
        self.time = [[]] * self.GPUCounts
        self.sleep_time = sleep_time  # 秒

    def monitor(self):
        try:
            n = 0
            while True:
                GPUCount = 0
                # 读取GPU句柄
                handle = pynvml.nvmlDeviceGetHandleByIndex(GPUCount)
                # 读取GPU内存信息
                info = pynvml.nvmlDeviceGetMemoryInfo(handle)
                total = f'{(info.total / 1024 / 1024 / 1024):.2f}'
                used = f'{(info.used / 1024 / 1024 / 1024):.2f}'
                free = f'{(info.free / 1024 / 1024 / 1024):.2f}'
                print(self.logfile(">>>>>>正在监控第{}块GPU内存<<<<<<<\n"
                                   "脚本已运行{}秒\n专用GPU内存:{}G\n"
                                   "已使用专用CPU内存:{}G\n剩余专用GPU内存:{}G\n"
                                   .format(GPUCount, n, float(total), float(used), float(free))))
                self.GPU_counts_list[GPUCount].append(float(used))
                self.time[GPUCount].append(n)
                self.paint(self.time[0], self.GPU_counts_list[0])
                time.sleep(self.sleep_time)
                n += self.sleep_time

        except:
            plt.savefig("CPU内存使用量.png")
            pynvml.nvmlShutdown()

    def paint(self, x_list, y_list):
        plt.clf()
        plt.plot(x_list, y_list)
        plt.title("GPU Usage Monitoring")
        plt.ylabel("GPU dedicated memory /G")
        plt.xlabel("time/s")
        plt.pause(0.1)  # 暂停一秒
        plt.ioff()

    def logfile(self, text):
        with open('image.log', 'a+', encoding='utf-8') as f:
            t = time.strftime('%y-%m-%d %H:%M:%S')
            text = t + " " + text + '\n'
            f.write(text)
        f.close()
        return text

    def abnormal(self):
        length = len(self.GPU_counts_list[0])
        average = sum(self.GPU_counts_list)/length
        self.logfile("平均专用GPU占用为:{}G".format(average))
        plt.savefig("CPU内存使用量.png")


if __name__ == "__main__":
    while True:
        times = input("请输入监控间隔时间(整秒>0),按回车键开启监控:")
        if times.isdigit():
            if int(times) > 0:
                break
    a = GPUMonitor(int(times))
    try:
        a.monitor()
    except:
        plt.savefig("CPU内存使用量.png")

三、使用方法

(1)运行python代码后会提示输入监控间隔时间,即每隔几秒监控一次(这里我设置的是整秒,也根据需求改成非整秒),这里我选择每隔一秒监控一次。

03e0ee4b672d4e45801c8ba1055d48d6.png

(2)脚本启动后,会看到内存监控脚本已经开始运行,并在终端打印了监控信息;

(3)同时,能够显示实时的监控折线图信息;

(4)如果需要保存,点击(3)步中下方的的保存按钮即可。

(5)同时,也会生成存储监控信息的日志文件,供使用者查看。

如果对您有帮助,收藏+关注再走吧!!!

(关注“测试开发自动化” 弓中皓,获取更多学习内容)

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
打赏
0
1
1
0
38
分享
相关文章
监控和分析 JavaScript 内存使用情况
【10月更文挑战第30天】通过使用上述的浏览器开发者工具、性能分析工具和内存泄漏检测工具,可以有效地监控和分析JavaScript内存使用情况,及时发现和解决内存泄漏、过度内存消耗等问题,从而提高JavaScript应用程序的性能和稳定性。在实际开发中,可以根据具体的需求和场景选择合适的工具和方法来进行内存监控和分析。
PyTorch CUDA内存管理优化:深度理解GPU资源分配与缓存机制
本文深入探讨了PyTorch中GPU内存管理的核心机制,特别是CUDA缓存分配器的作用与优化策略。文章分析了常见的“CUDA out of memory”问题及其成因,并通过实际案例(如Llama 1B模型训练)展示了内存分配模式。PyTorch的缓存分配器通过内存池化、延迟释放和碎片化优化等技术,显著提升了内存使用效率,减少了系统调用开销。此外,文章还介绍了高级优化方法,包括混合精度训练、梯度检查点技术及自定义内存分配器配置。这些策略有助于开发者在有限硬件资源下实现更高性能的深度学习模型训练与推理。
650 0
深度洞察内网监控电脑:基于Python的流量分析算法
在当今数字化环境中,内网监控电脑作为“守城卫士”,通过流量分析算法确保内网安全、稳定运行。基于Python的流量分析算法,利用`scapy`等工具捕获和解析数据包,提取关键信息,区分正常与异常流量。结合机器学习和可视化技术,进一步提升内网监控的精准性和效率,助力企业防范潜在威胁,保障业务顺畅。本文深入探讨了Python在内网监控中的应用,展示了其实战代码及未来发展方向。
CUDA重大更新:原生Python可直接编写高性能GPU程序
NVIDIA在2025年GTC大会上宣布CUDA并行计算平台正式支持原生Python编程,消除了Python开发者进入GPU加速领域的技术壁垒。这一突破通过重新设计CUDA开发模型,引入CUDA Core、cuPyNumeric、NVMath Python等核心组件,实现了Python与GPU加速的深度集成。开发者可直接用Python语法进行高性能并行计算,显著降低门槛,扩展CUDA生态,推动人工智能、科学计算等领域创新。此更新标志着CUDA向更包容的语言生态系统转型,未来还将支持Rust、Julia等语言。
179 3
CUDA重大更新:原生Python可直接编写高性能GPU程序
基于 Python 广度优先搜索算法的监控局域网电脑研究
随着局域网规模扩大,企业对高效监控计算机的需求增加。广度优先搜索(BFS)算法凭借其层次化遍历特性,在Python中可用于实现局域网内的计算机设备信息收集、网络连接状态监测及安全漏洞扫描,确保网络安全与稳定运行。通过合理选择数据结构与算法,BFS显著提升了监控效能,助力企业实现智能化的网络管理。
62 7
Jetson 学习笔记(八):htop查看CPU占用情况和jtop监控CPU和GPU
在NVIDIA Jetson平台上使用htop和jtop工具来监控CPU、GPU和内存的使用情况,并提供了安装和使用这些工具的具体命令。
607 0
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
160 20
监控堆外内存使用情况
监控堆外内存使用情况
353 4

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等