python并发编程:Python异步IO实现并发爬虫

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: python并发编程:Python异步IO实现并发爬虫

往期文章:

  1. 并发编程简介
  2. 怎样选择多线程多进程多协程
  3. Python速度慢的罪魁祸首,全局解释器锁GIL
  4. 使用多线程,Python爬虫被加速10倍
  5. Python实现生产者消费者爬虫
  6. Python线程安全问题以及解决方案
  7. Python好用的线程池ThreadPoolExecutor
  8. Python使用线程池在Web服务中实现加速
  9. 使用多进程multiprocessing模块加速程序的运行
  10. 使用多进程multiprocessing模块加速程序的运行

协程内容的介绍

  • 上图的上面是单线程爬虫 cpu的执行情况,可以发现,经常因为等待IO而影响CPU的执行效率。
  • 上图的下面是协程,协程主要是在单线程内实现的,以爬虫为例,协程先是让cpu爬取第一个url的内容,等待IO的时候,它又让CPU爬取第二个url的内容,当第二个任务等待IO的时候,它又让CPU爬取第三个url的内容,然后第三个任务等待IO, 它又循环回来,执行第一个任务,就这样返回循环。 所以,协程就是大循环。

asyncio使用

import asyncio

# 获取事件循环
loop = asyncio.get_event_loop()

# 定义协程
async def myfunc(url):
    await get_url(url)

# 创建task列表
tasks = [loop.create_task(myfunc(url)) for url in urls]

# 执行爬虫事件列表
loop.run_until_complete(asyncio.wait(tasks))

注意:

  • 要用在异步IO编程中, 依赖的库必须支持异步IO特性
  • 爬虫引用中:requests 不支持异步, 需要用 aiohttp

代码演示

import aiohttp
import asyncio
from loguru import logger
from  cnblogs_spider import urls
import time

async def async_craw(url):
    async with aiohttp.ClientSession() as session:
        async with session.get(url) as resp:
            result = await resp.text()
            logger.info("craw url {},{}".format(url,len(result)))


loop = asyncio.get_event_loop()
# 定义超级循环
tasks = [ loop.create_task(async_craw(url))  for url in urls]


start = time.time()
loop.run_until_complete(asyncio.wait(tasks))
end = time.time()
logger.info("use time {}秒".format(end-start))

执行结果如下:

信号量

信号量(英语:Semaphore)又称为信号量、旗语是一个同步对象,用于保持在0至指定最大值之间的一个计数值。

  • 当线程完成一次对该semaphore对象的等待(wait)时,该计数值减一;
  • 当线程完成一次对semaphore对象的释放(release)时,计数值加一。
  • 当计数值为0,则线程等待该semaphore对象不再能成功直至该semaphore对象变成signaled状态
  • semaphore对象的计数值大于0,为signaled状态;计数值等于0,为nonsignaled状态.

信号量是用来控制并发度的。

主要有两种实现方式:

  • 方式一:
    ```python
    sem = asyncio.Semaphore(10)

... later

async with sem:

# work with shared resource

- 方式二:
```python
sem = asyncio.Semaphore(10)

# ... later
await sem.acquire()
try:
    # work with shared resource
finally:
    sem.release()

用信号量控制协程数进行爬虫

import aiohttp
import asyncio
from loguru import logger
from  cnblogs_spider import urls
import time



# 加入信号量,控制并发度
semaphore = asyncio.Semaphore(10)

async def async_craw(url):
    async with semaphore:
        async with aiohttp.ClientSession() as session:
            async with session.get(url) as resp:
                result = await resp.text()
                logger.info("craw url {},{}".format(url,len(result)))


loop = asyncio.get_event_loop()
# 定义超级循环
tasks = [ loop.create_task(async_craw(url))  for url in urls]


start = time.time()
loop.run_until_complete(asyncio.wait(tasks))
end = time.time()
logger.info("use time {}秒".format(end-start))

总结

本系列的文章已经更新完毕,如果大家对python并发编程感兴趣的可以关注攻城狮成长日记公众号,获取更多的内容,以下是本系列的全部代码。大家可以访问这个网址获取代码https://gitee.com/didiplus/pythonscript.git

目录
相关文章
|
2月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
139 6
|
15天前
|
Python
深入理解 Python 中的异步操作:async 和 await
Python 的异步编程通过 `async` 和 `await` 关键字处理 I/O 密集型任务,如网络请求和文件读写,显著提高性能。`async` 定义异步函数,返回 awaitable 对象;`await` 用于等待这些对象完成。本文介绍异步编程基础、`async` 和 `await` 的用法、常见模式(并发任务、异常处理、异步上下文管理器)及实战案例(如使用 aiohttp 进行异步网络请求),帮助你高效利用系统资源并提升程序性能。
29 7
|
16天前
|
SQL 网络协议 安全
Python异步: 什么时候使用异步?
Asyncio 是 Python 中用于异步编程的库,适用于协程、非阻塞 I/O 和异步任务。使用 Asyncio 的原因包括:1) 使用协程实现轻量级并发;2) 采用异步编程范式提高效率;3) 实现非阻塞 I/O 提升 I/O 密集型应用性能。然而,Asyncio 并不适合所有场景,特别是在 CPU 密集型任务或已有线程/进程方案的情况下。选择 Asyncio 应基于项目需求和技术优势。
|
1月前
|
数据采集 JSON 测试技术
Grequests,非常 Nice 的 Python 异步 HTTP 请求神器
在Python开发中,处理HTTP请求至关重要。`grequests`库基于`requests`,支持异步请求,通过`gevent`实现并发,提高性能。本文介绍了`grequests`的安装、基本与高级功能,如GET/POST请求、并发控制等,并探讨其在实际项目中的应用。
56 3
|
2月前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
54 2
|
2月前
|
数据采集 Web App开发 JavaScript
爬虫策略规避:Python爬虫的浏览器自动化
爬虫策略规避:Python爬虫的浏览器自动化
|
2月前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
116 4
|
2月前
|
网络协议 物联网 API
Python网络编程:Twisted框架的异步IO处理与实战
【10月更文挑战第26天】Python 是一门功能强大且易于学习的编程语言,Twisted 框架以其事件驱动和异步IO处理能力,在网络编程领域独树一帜。本文深入探讨 Twisted 的异步IO机制,并通过实战示例展示其强大功能。示例包括创建简单HTTP服务器,展示如何高效处理大量并发连接。
69 1
|
2月前
|
数据库 开发者 Python
“Python异步编程革命:如何从编程新手蜕变为并发大师,掌握未来技术的制胜法宝”
【10月更文挑战第25天】介绍了Python异步编程的基础和高级技巧。文章从同步与异步编程的区别入手,逐步讲解了如何使用`asyncio`库和`async`/`await`关键字进行异步编程。通过对比传统多线程,展示了异步编程在I/O密集型任务中的优势,并提供了最佳实践建议。
25 1
|
3月前
|
关系型数据库 MySQL 数据处理
探索Python中的异步编程:从asyncio到异步数据库操作
在这个快节奏的技术世界里,效率和性能是关键。本文将带你深入Python的异步编程世界,从基础的asyncio库开始,逐步探索到异步数据库操作的高级应用。我们将一起揭开异步编程的神秘面纱,探索它如何帮助我们提升应用程序的性能和响应速度。