ThreadLocal 源码解析get(),set(), remove()用不好容易内存泄漏

本文涉及的产品
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介: ThreadLocal 源码解析get(),set(), remove()用不好容易内存泄漏

1.Java中内存泄漏

在 Java 中,内存泄漏是指程序在申请内存后,无法释放不再使用的内存空间。这意味着随着时间的推移,应用程序占用的内存会持续增长,最终可能导致OutOfMemoryError,使得应用程序崩溃

内存泄漏通常发生在以下情况:

  1. 对象引用:当一个对象不再需要,但仍然被引用,导致垃圾收集器无法回收它。
  2. 静态变量:如果一个对象被静态变量引用,那么即使该对象不再被其他变量引用,垃圾收集器也无法回收它。
  3. 线程:如果一个线程持有对象的引用,而该线程无法结束,那么该对象将无法被回收。
  4. 集合:使用如 HashMap、HashSet 等集合时,如果不小心,可能会出现内存泄漏。例如,当从集合中删除元素时,如果只是简单地从集合中移除引用,而不是真正地删除元素,那么这些元素将无法被垃圾收集器回收。
  5. 监听器和回调:如果注册了监听器或回调,但没有正确地取消注册,可能会导致内存泄漏。
  6. 单例和缓存:如果缓存中的对象没有正确地过期或被清理,可能会导致大量的内存占用。
  7. 代码问题:如无限递归、大数据量的循环等,也可能导致内存泄漏。

要避免内存泄漏,需要注意以下几点:

  1. 及时释放资源:关闭流、数据库连接等资源。
  2. 避免长时间持有对象引用:尤其是静态变量和全局变量。
  3. 使用弱引用和软引用:如 WeakReferenceSoftReference,它们可以用来引用对象,但不会阻止对象被垃圾收集器回收。
  4. 监控和分析工具:使用如 VisualVM、JProfiler 等工具来监控和分析内存使用情况,以便及时发现和解决内存泄漏问题。

2.先上案例

public class UserEntity implements Serializable {
    private String id;
    private String name;
 
    public String getId() {
        return id;
    }
 
    public void setId(String id) {
        this.id = id;
    }
 
    public String getName() {
        return name;
    }
 
    public void setName(String name) {
        this.name = name;
    }
}
public class ThreadLocalTest {
    private static final ThreadLocal<UserEntity> THREAD_LOCAL = new ThreadLocal<UserEntity>();
 
    public static void set(UserEntity tokenInfo) {
        THREAD_LOCAL.set(tokenInfo);
    }
 
    public static UserEntity get(){
        return THREAD_LOCAL.get();
    }
 
    public static void remove(){
        THREAD_LOCAL.remove();
    }
}

3.Key 的泄漏

每一个 Thread 都有一个 ThreadLocal.ThreadLocalMap 这样的类型变量,该变量的名字叫作 threadLocals。线程在访问了 ThreadLocal 之后,都会在它的 ThreadLocalMap 里面的 Entry 中去维护该 ThreadLocal 变量与具体实例的映射

我们可能会在业务代码中执行了 ThreadLocal instance = null 操作,想清理掉这个 ThreadLocal 实例,但是假设我们在 ThreadLocalMap 的 Entry 中强引用了 ThreadLocal 实例,那么,虽然在业务代码中把 ThreadLocal 实例置为了 null,但是在 Thread 类中依然有这个引用链的存在

GC 在垃圾回收的时候会进行可达性分析,它会发现这个 ThreadLocal 对象依然是可达的,所以对于这个 ThreadLocal 对象不会进行垃圾回收,这样的话就造成了内存泄漏的情况

JDK 开发者考虑到了这一点,「所以 ThreadLocalMap 中的 Entry 继承了 WeakReference 弱引用」,代码如下所示

static class Entry extends WeakReference<ThreadLocal<?>> {
    /** The value associated with this ThreadLocal. */
    Object value;
 
    Entry(ThreadLocal<?> k, Object v) {
        super(k);
        value = v;
    }
}

这个 Entry 是 extends WeakReference。弱引用的特点是,「如果这个对象只被弱引用关联,而没有任何强引用关联,那么这个对象就可以被回收,所以弱引用不会阻止 GC。」因此,这个弱引用的机制就避免了 ThreadLocal 的内存泄露问题

4.Value 的泄漏

虽然 ThreadLocalMap 的每个 Entry 都是一个对 key 的弱引用,但是这个 Entry 包含了一个对 value 的强引用,还是刚才那段代码

static class Entry extends WeakReference<ThreadLocal<?>> {
    /** The value associated with this ThreadLocal. */
    Object value;
 
 
    Entry(ThreadLocal<?> k, Object v) {
        super(k);
        value = v;
    }
}

可以看到,value = v 这行代码就代表了强引用的发生

正常情况下,当线程终止,key 所对应的 value 是可以被正常垃圾回收的,因为没有任何强引用存在了。「但是有时线程的生命周期是很长的,如果线程迟迟不会终止」,那么可能 ThreadLocal 以及它所对应的 value 早就不再有用了。在这种情况下,我们应该保证它们都能够被正常的回收

为了更好地分析这个问题,我们用下面这张图来看一下具体的引用链路(实线代表强引用,虚线代表弱引用)

可以看到,左侧是引用栈,栈里面有一个 ThreadLocal 的引用和一个线程的引用,右侧是我们的堆,在堆中是对象的实例

重点看一下下面这条链路:Thread Ref → Current Thread → ThreadLocalMap → Entry → Value → 可能泄漏的value实例

这条链路是随着线程的存在而一直存在的,「如果线程执行耗时任务而不停止,那么当垃圾回收进行可达性分析的时候,这个 Value 就是可达的,所以不会被回收。」但是与此同时可能我们已经完成了业务逻辑处理,不再需要这个 Value 了,此时也就发生了内存泄漏问题

JDK 同样也考虑到了这个问题,在执行 ThreadLocal 的 set、remove、rehash 等方法时,它都会扫描 key 为 null 的 Entry,如果发现某个 Entry 的 key 为 null,则代表它所对应的 value 也没有作用了,所以它就会把对应的 value 置为 null,这样,value 对象就可以被正常回收了

但是假设 ThreadLocal 已经不被使用了,那么实际上 set、remove、rehash 方法也不会被调用,与此同时,如果这个线程又一直存活、不终止的话,那么刚才的那个调用链就一直存在,也就导致了 value 的内存泄漏

5.如何避免内存泄露

调用 ThreadLocal 的 remove 方法。调用这个方法就可以「删除对应的 value 对象,可以避免内存泄漏」

public void remove() {
    ThreadLocalMap m = getMap(Thread.currentThread());
    if (m != null)
        m.remove(this);
}

它是先获取到 ThreadLocalMap 这个引用的,并且调用了它的 remove 方法。这里的 remove 方法可以把 key 所对应的 value 给清理掉,这样一来,value 就可以被 GC 回收了,在使用完了 ThreadLocal 之后,我们应该「手动去调用它的 remove 方法,目的是防止内存泄漏的发生」

相关文章
|
6天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
20 2
|
1月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
41 3
|
7天前
|
存储 算法 Java
Java Set深度解析:为何它能成为“无重复”的代名词?
Java的集合框架中,Set接口以其“无重复”特性著称。本文解析了Set的实现原理,包括HashSet和TreeSet的不同数据结构和算法,以及如何通过示例代码实现最佳实践。选择合适的Set实现类和正确实现自定义对象的hashCode()和equals()方法是关键。
20 4
|
6天前
|
存储 安全 Linux
Golang的GMP调度模型与源码解析
【11月更文挑战第11天】GMP 调度模型是 Go 语言运行时系统的核心部分,用于高效管理和调度大量协程(goroutine)。它通过少量的操作系统线程(M)和逻辑处理器(P)来调度大量的轻量级协程(G),从而实现高性能的并发处理。GMP 模型通过本地队列和全局队列来减少锁竞争,提高调度效率。在 Go 源码中,`runtime.h` 文件定义了关键数据结构,`schedule()` 和 `findrunnable()` 函数实现了核心调度逻辑。通过深入研究 GMP 模型,可以更好地理解 Go 语言的并发机制。
|
19天前
|
消息中间件 缓存 安全
Future与FutureTask源码解析,接口阻塞问题及解决方案
【11月更文挑战第5天】在Java开发中,多线程编程是提高系统并发性能和资源利用率的重要手段。然而,多线程编程也带来了诸如线程安全、死锁、接口阻塞等一系列复杂问题。本文将深度剖析多线程优化技巧、Future与FutureTask的源码、接口阻塞问题及解决方案,并通过具体业务场景和Java代码示例进行实战演示。
38 3
|
29天前
|
存储 算法 Java
Java Set深度解析:为何它能成为“无重复”的代名词?
Java Set深度解析:为何它能成为“无重复”的代名词?本文详解Set接口及其主要实现类(HashSet、TreeSet、LinkedHashSet)的“无重复”特性,探讨其内部数据结构和算法实现,并通过示例代码展示最佳实践。
30 3
|
1月前
|
存储
让星星⭐月亮告诉你,HashMap的put方法源码解析及其中两种会触发扩容的场景(足够详尽,有问题欢迎指正~)
`HashMap`的`put`方法通过调用`putVal`实现,主要涉及两个场景下的扩容操作:1. 初始化时,链表数组的初始容量设为16,阈值设为12;2. 当存储的元素个数超过阈值时,链表数组的容量和阈值均翻倍。`putVal`方法处理键值对的插入,包括链表和红黑树的转换,确保高效的数据存取。
53 5
|
1月前
|
Java Spring
Spring底层架构源码解析(三)
Spring底层架构源码解析(三)
111 5
|
1月前
|
XML Java 数据格式
Spring底层架构源码解析(二)
Spring底层架构源码解析(二)
|
1月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
67 0

推荐镜像

更多