Redis的内存淘汰策略是什么?

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: 【4月更文挑战第2天】Redis内存淘汰策略在内存满时,通过删除旧数据为新数据腾空间。策略包括:volatile-lru/LFU(基于LRU/LFU算法淘汰有过期时间的键),volatile-random/ttl(随机/按TTL淘汰),allkeys-lru/LFU(所有键的LRU/LFU),allkeys-random(随机淘汰所有键),以及noeviction(不淘汰,返回错误)。选择策略要考虑访问模式、数据重要性和性能需求。

Redis的内存淘汰策略是指在Redis的内存达到最大限制时,为了继续存储新的数据而采取的一种机制,用于选择并删除一些已存在的数据以释放内存空间。Redis提供了多种内存淘汰策略,以适应不同的应用场景和需求。

以下是Redis的主要内存淘汰策略:

volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键值对中,使用LRU(Least Recently Used,最近最少使用)算法进行淘汰。
volatile-lfu:在设置了过期时间的键值对中,使用LFU(Least Frequently Used,最少使用)算法进行淘汰。LFU算法会追踪键值对的访问频率,并淘汰访问频率最低的键值对。
volatile-random:在设置了过期时间的键值对中,随机选择并淘汰一个键值对。
volatile-ttl:在设置了过期时间的键值对中,选择剩余生存时间(TTL)最短的键值对进行淘汰。
以上四种策略都只在设置了过期时间的键中进行淘汰。如果没有键可以淘汰,则会返回错误。

除了针对设置了过期时间的键的策略外,Redis还提供了以下两种策略,它们会在所有键中进行淘汰:

allkeys-lru:在所有键中,使用LRU算法进行淘汰。
allkeys-lfu:在所有键中,使用LFU算法进行淘汰。
allkeys-random:在所有键中,随机选择并淘汰一个键值对。
另外,Redis还提供了一个不淘汰的策略:

noeviction:当内存不足以容纳新写入数据时,新写入操作会报错,不会淘汰任何键值对。
在选择内存淘汰策略时,需要根据应用程序的访问模式、数据的重要性和对性能的要求来综合考虑。例如,如果应用程序的数据访问模式符合LRU特性,那么选择volatile-lru或allkeys-lru可能是一个好的选择;如果希望避免误淘汰重要数据,那么volatile-ttl可能更适合。同时,可以在程序运行时重新配置策略,并使用Redis的info命令输出来监控缓存未命中和命中的数量,以调整设置。

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
1月前
|
NoSQL Redis
Redis的数据淘汰策略有哪些 ?
Redis 提供了 8 种数据淘汰策略,分为淘汰易失数据和淘汰全库数据两大类。易失数据淘汰策略包括:volatile-lru、volatile-lfu、volatile-ttl 和 volatile-random;全库数据淘汰策略包括:allkeys-lru、allkeys-lfu 和 allkeys-random。此外,还有 no-eviction 策略,禁止驱逐数据,当内存不足时新写入操作会报错。
67 16
|
24天前
|
存储 算法 Java
Java内存管理深度剖析与优化策略####
本文深入探讨了Java虚拟机(JVM)的内存管理机制,重点分析了堆内存的分配策略、垃圾回收算法以及如何通过调优提升应用性能。通过案例驱动的方式,揭示了常见内存泄漏的根源与解决策略,旨在为开发者提供实用的内存管理技巧,确保应用程序既高效又稳定地运行。 ####
|
14天前
|
NoSQL 算法 Redis
redis内存淘汰策略
Redis支持8种内存淘汰策略,包括noeviction、volatile-ttl、allkeys-random、volatile-random、allkeys-lru、volatile-lru、allkeys-lfu和volatile-lfu。这些策略分别针对所有键或仅设置TTL的键,采用随机、LRU(最近最久未使用)或LFU(最少频率使用)等算法进行淘汰。
32 5
|
14天前
|
NoSQL 安全 Redis
redis持久化策略
Redis 提供了两种主要的持久化策略:RDB(Redis DataBase)和AOF(Append Only File)。RDB通过定期快照将内存数据保存为二进制文件,适用于快速备份与恢复,但可能因定期保存导致数据丢失。AOF则通过记录所有写操作来确保数据安全性,适合频繁写入场景,但文件较大且恢复速度较慢。两者结合使用可增强数据持久性和恢复能力,同时Redis还支持复制功能提升数据可用性和容错性。
37 5
|
18天前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
51 7
|
18天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
48 1
|
1月前
|
存储 NoSQL Redis
Redis的数据过期策略有哪些 ?
Redis 采用两种过期键删除策略:惰性删除和定期删除。惰性删除在读取键时检查是否过期并删除,对 CPU 友好但可能积压大量过期键。定期删除则定时抽样检查并删除过期键,对内存更友好。默认每秒扫描 10 次,每次检查 20 个键,若超过 25% 过期则继续检查,单次最大执行时间 25ms。两者结合使用以平衡性能和资源占用。
45 11
|
1月前
|
存储 分布式计算 算法
1GB内存挑战:高效处理40亿QQ号的策略
在面对如何处理40亿个QQ号仅用1GB内存的难题时,我们需要采用一些高效的数据结构和算法来优化内存使用。这个问题涉及到数据存储、查询和处理等多个方面,本文将分享一些实用的技术策略,帮助你在有限的内存资源下处理大规模数据集。
31 1
|
1月前
|
存储 监控 Java
深入理解计算机内存管理:优化策略与实践
深入理解计算机内存管理:优化策略与实践
|
1月前
|
存储 缓存 监控
利用 Redis 缓存特性避免缓存穿透的策略与方法
【10月更文挑战第23天】通过以上对利用 Redis 缓存特性避免缓存穿透的详细阐述,我们对这一策略有了更深入的理解。在实际应用中,我们需要根据具体情况灵活运用这些方法,并结合其他技术手段,共同保障系统的稳定和高效运行。同时,要不断关注 Redis 缓存特性的发展和变化,及时调整策略,以应对不断出现的新挑战。
69 10