【STM32】基于HAL库的360度编码器、摇杆代码编写

简介: 【STM32】基于HAL库的360度编码器、摇杆代码编写

360度旋转编码器

unsigned char cur_num = 0;
//外部中断初始化
void EXTI_Init(void)
{
    GPIO_InitTypeDef GPIO_Initure;
    
    __HAL_RCC_GPIOE_CLK_ENABLE();               //开启GPIOE时钟
    
    GPIO_Initure.Pin=GPIO_PIN_2;  //PE2
    GPIO_Initure.Mode=GPIO_MODE_IT_FALLING;     //下降沿触发
    GPIO_Initure.Pull=GPIO_PULLUP;
    HAL_GPIO_Init(GPIOE,&GPIO_Initure);
    
    //中断线2-PE2
    HAL_NVIC_SetPriority(EXTI2_IRQn,2,1);       //抢占优先级为2,子优先级为1
    HAL_NVIC_EnableIRQ(EXTI2_IRQn);             //使能中断线2
}
void EXTI2_IRQHandler(void)
{
    HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_2);   //调用中断处理公用函数
}
//中断服务程序中需要做的事情
//在HAL库中所有的外部中断服务函数都会调用此函数
//GPIO_Pin:中断引脚号
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
  if(GPIO_Pin == GPIO_PIN_2) //检测到有变化就进来处理
  {
    if(HAL_GPIO_ReadPin(GPIOE,GPIO_PIN_2) == HAL_GPIO_ReadPin(GPIOE,GPIO_PIN_3))  //clk pb0 == dt pb1
            cur_num++;
    else
            cur_num--;
  }
}

重点是先后顺时针旋转和逆时针旋转中断的引脚先后顺序不同。

摇杆

void MX_ADC1_Init(void)
{
  /* USER CODE BEGIN ADC1_Init 0 */
  /* USER CODE END ADC1_Init 0 */
  ADC_ChannelConfTypeDef sConfig = {0};
  /* USER CODE BEGIN ADC1_Init 1 */
  /* USER CODE END ADC1_Init 1 */
  /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
  */
  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
  hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  hadc1.Init.ScanConvMode = ENABLE;
  hadc1.Init.ContinuousConvMode = ENABLE;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.NbrOfConversion = 3;
  hadc1.Init.DMAContinuousRequests = ENABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  */
  sConfig.Channel = ADC_CHANNEL_4;
  sConfig.Rank = 1;
  sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  */
  sConfig.Channel = ADC_CHANNEL_5;
  sConfig.Rank = 2;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  */
  sConfig.Channel = ADC_CHANNEL_6;
  sConfig.Rank = 3;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN ADC1_Init 2 */
  /* USER CODE END ADC1_Init 2 */
}
void HAL_ADC_MspInit(ADC_HandleTypeDef* adcHandle)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
  if(adcHandle->Instance==ADC1)
  {
  /* USER CODE BEGIN ADC1_MspInit 0 */
  /* USER CODE END ADC1_MspInit 0 */
    /* ADC1 clock enable */
    __HAL_RCC_ADC1_CLK_ENABLE();
    __HAL_RCC_GPIOA_CLK_ENABLE();
    /**ADC1 GPIO Configuration
    PA4     ------> ADC1_IN4
    PA5     ------> ADC1_IN5
    PA6     ------> ADC1_IN6
    */
    GPIO_InitStruct.Pin = GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6;
    GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    /* ADC1 DMA Init */
    /* ADC1 Init */
    hdma_adc1.Instance = DMA2_Stream0;
    hdma_adc1.Init.Channel = DMA_CHANNEL_0;
    hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY;
    hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE;
    hdma_adc1.Init.MemInc = DMA_MINC_ENABLE;
    hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
    hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
    hdma_adc1.Init.Mode = DMA_CIRCULAR;
    hdma_adc1.Init.Priority = DMA_PRIORITY_LOW;
    hdma_adc1.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
    if (HAL_DMA_Init(&hdma_adc1) != HAL_OK)
    {
      Error_Handler();
    }
    __HAL_LINKDMA(adcHandle,DMA_Handle,hdma_adc1);
    /* ADC1 interrupt Init */
    HAL_NVIC_SetPriority(ADC_IRQn, 0, 0);
    HAL_NVIC_EnableIRQ(ADC_IRQn);
  /* USER CODE BEGIN ADC1_MspInit 1 */
  /* USER CODE END ADC1_MspInit 1 */
  }
}
void HAL_ADC_MspDeInit(ADC_HandleTypeDef* adcHandle)
{
  if(adcHandle->Instance==ADC1)
  {
  /* USER CODE BEGIN ADC1_MspDeInit 0 */
  /* USER CODE END ADC1_MspDeInit 0 */
    /* Peripheral clock disable */
    __HAL_RCC_ADC1_CLK_DISABLE();
    /**ADC1 GPIO Configuration
    PA4     ------> ADC1_IN4
    PA5     ------> ADC1_IN5
    PA6     ------> ADC1_IN6
    */
    HAL_GPIO_DeInit(GPIOA, GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6);
    /* ADC1 DMA DeInit */
    HAL_DMA_DeInit(adcHandle->DMA_Handle);
    /* ADC1 interrupt Deinit */
    HAL_NVIC_DisableIRQ(ADC_IRQn);
  /* USER CODE BEGIN ADC1_MspDeInit 1 */
  /* USER CODE END ADC1_MspDeInit 1 */
  }
}
/* USER CODE BEGIN 1 */
void ADC1_Poll(void)
{
    double value_ch1;
    double value_ch2;
    double value_ch3;
    for(int i = 0; i < 36; i+=3) 
    {
        value_ch1 += (float)(adc_dma_buf[i + 0]/4096.0*3.3); // 实际采集到的电流值 PA4 Y
        value_ch2 += (float)(adc_dma_buf[i + 1]/4096.0*3.3); // 实际采集到的电流值 PA5 X
        value_ch3 += (float)(adc_dma_buf[i + 2]/4096.0*3.3); // 实际采集到的电流值 PA6 SW
    }
    value_ch1 /= 12.0;
    value_ch2 /= 12.0;
    value_ch3 /= 12.0;
    
    
    if((value_ch1>=1.0)&&(value_ch1<=2.8) && (value_ch2>=3.0)&&(value_ch2<=3.3))
  {
    printf("\r\n***前进****\r\n");
  }
  if((value_ch1>=0) &&(value_ch1<=0.5) && (value_ch2>=1.0) && (value_ch2<=2.8))
  {
    printf("\r\n***向左****\r\n");
  }
  if((value_ch1>=3.0)&&(value_ch1<=3.3) && (value_ch2>=1.0)&&(value_ch2<=2.8))
  {
    printf("\r\n***向右****\r\n");
  }
  if((value_ch1>=1.0)&&(value_ch1<=2.8) && (value_ch2>=0)&&(value_ch2<=0.5))
  {
    printf("\r\n***后退****\r\n");
  }
    if((value_ch3<=0.02))
  {
    printf("\r\n***按键按下****\r\n");
  }
    
    // printf("\r\nch1Y:%.2f ch2X:%.2f ch3SW:%.2f\r\n",value_ch1, value_ch2, value_ch3);
}

就是一个简单的模拟量输出判断,打开printf可以实时看到adc采集的端口电压就能明白原理。

相关文章
|
7月前
使用STM32F103标准库实现定时器控制LED点亮和关闭
通过这篇博客,我们学习了如何使用STM32F103标准库,通过定时器来控制LED的点亮和关闭。我们配置了定时器中断,并在中断处理函数中实现了LED状态的切换。这是一个基础且实用的例子,适合初学者了解STM32定时器和中断的使用。 希望这篇博客对你有所帮助。如果有任何问题或建议,欢迎在评论区留言。
499 2
|
6月前
stm32f407探索者开发板(十七)——串口寄存器库函数配置方法
stm32f407探索者开发板(十七)——串口寄存器库函数配置方法
870 0
|
6月前
STM32CubeMX EC11旋转编码器驱动
STM32CubeMX EC11旋转编码器驱动
299 10
|
7月前
|
IDE 开发工具
使用STM32F103标准库实现自定义键盘
通过本文,我们学习了如何使用STM32F103标准库实现一个简单的自定义键盘。我们首先初始化了GPIO引脚,然后实现了一个扫描函数来检测按键状态。这个项目不仅能够帮助我们理解STM32的GPIO配置和按键扫描原理,还可以作为进一步学习中断处理和低功耗设计的基础。希望本文对你有所帮助,祝你在嵌入式开发的道路上不断进步!
547 4
|
7月前
|
存储 数据采集 数据安全/隐私保护
使用STM32F103读取TF卡并模拟U盘:使用标准库实现
通过以上步骤,你可以实现用STM32F103将TF卡内容变成U盘进行读取。这种功能在数据采集、便携式存储设备等应用中非常有用。如果你有更多的需求,可以进一步扩展此项目,例如添加文件管理功能、加密存储等。希望这篇博客能帮到你,如果有任何问题,欢迎在评论区留言讨论!
284 1
|
6月前
|
传感器 编解码 API
【STM32开发入门】温湿度监测系统实战:SPI LCD显示、HAL库应用、GPIO配置、UART中断接收、ADC采集与串口通信全解析
SPI(Serial Peripheral Interface)是一种同步串行通信接口,常用于微控制器与外围设备间的数据传输。SPI LCD是指使用SPI接口与微控制器通信的液晶显示屏。这类LCD通常具有较少的引脚(通常4个:MISO、MOSI、SCK和SS),因此在引脚资源有限的系统中非常有用。通过SPI协议,微控制器可以向LCD发送命令和数据,控制显示内容和模式。
228 0
|
7月前
|
存储 数据安全/隐私保护 芯片
【STM32】详解嵌入式中FLASH闪存的特性和代码示例
【STM32】详解嵌入式中FLASH闪存的特性和代码示例
【STM32】详解独立看门狗的本质和使用步骤&代码
【STM32】详解独立看门狗的本质和使用步骤&代码
|
7月前
|
传感器 数据格式
【STM32】DHT11温湿度模块传感器详解&代码
【STM32】DHT11温湿度模块传感器详解&代码
|
8月前
|
传感器
STM32标准库ADC和DMA知识点总结-1
STM32标准库ADC和DMA知识点总结