雷达模糊函数及MATLAB仿真(三)

简介: 雷达模糊函数及MATLAB仿真

雷达模糊函数及MATLAB仿真(二)https://developer.aliyun.com/article/1472372


6、二进制相位编码

巴克码是二进制相位编码中的一族,它产生的压缩后的波形具有恒等于单位值的旁瓣电平。

相位编码的通用形式:

巴克码自相关函数:

①、MATLAB 源码

Barker_ambig.m

function [ambig] = barker_ambig(uinput)
% Compute and plot the ambiguity function for a Barker code
%Compute the ambiguity function
% by utilizing the FFT through combining multiple range cuts
N = size(uinput,2);
tau = N;
Barker_code = uinput;
samp_num = size(Barker_code,2) *10;
n = ceil(log(samp_num) / log(2));
nfft = 2^n;
u(1:nfft) = 0;
j = 0;
for index = 1:10:samp_num
    index;
    j = j+1;
    u(index:index+10-1) = Barker_code(j);
end
v = u;
delay = linspace(-tau, tau, nfft);
freq_del = 12 / tau /100;
j = 0;
vfft = fft(v,nfft);
for freq = -6/tau:freq_del:6/tau;
    j = j+1;
    exf = exp(sqrt(-1) * 2. * pi * freq .* delay);
    u_times_exf = u .* exf;
    ufft = fft(u_times_exf,nfft);
    prod = ufft .* conj(vfft);
    ambig(:,j) = fftshift(abs(ifft(prod))');
end
freq = -6/tau:freq_del:6/tau;
delay = linspace(-N,N,nfft);
figure (1)
mesh(freq,delay,ambig ./ max(max(ambig)))
%colormap([.5 .5 .5])
%colormap(gray)
axis tight
xlabel('frequency')
ylabel('delay')
zlabel('ambiguity function')
figure (2)
value = 10 * N ;
plot(delay,ambig(:,51)/value,'k')
xlabel('delay')
ylabel('normalized amibiguity cut for f=0')
grid
axis tight
figure (3)
contour(freq,delay,ambig ./ max(max(ambig)))
%colormap([.5 .5 .5])
%colormap (gray)
xlabel('frequency')
ylabel('delay')
grid on

test.m

close all
clear all
u = [1 1 1 1 1 -1 -1 1 1 -1 1 -1 1];
x = Barker_ambig(u);

程序中举例的是长度为 13 的巴克码

②、仿真结果

1)巴克码的模糊函数图

2)巴克码的模糊函数切面图

巴克码的零多普勒模糊函数图

3)巴克码的等高线图

7、伪随机数编码

伪随机数(PRN)编码也称为最大长度序列(MLS)码。

①、MATLAB 源码

prn_ambig.m

function [ambig] = prn_ambig(uinput)
% Compute and plot the ambiguity function for a PRN code
% Compute the ambiguity function by utilizing the FFT 
% through combining multiple range cuts
N = size(uinput,2);
tau = N;
PRN = uinput;
samp_num = size(PRN,2) * 10;
n = ceil(log(samp_num) / log(2));
nfft = 2^n;
u(1:nfft) = 0;
j = 0;
for index = 1:10:samp_num
    index;
    j = j+1;
    u(index:index+10-1) = PRN(j);
end
% set-up the array v
v = u;
delay = linspace(0,5*tau,nfft);
freq_del = 8 / tau /100;
j = 0;
vfft = fft(v,nfft);
for freq = -4/tau:freq_del:4/tau;
    j = j+1;
    exf = exp(sqrt(-1) * 2. * pi * freq .* delay);
    u_times_exf = u .* exf;
    ufft = fft(u_times_exf,nfft);
    prod = ufft .* conj(vfft);
    ambig(:,j) = fftshift(abs(ifft(prod))');
end
freq = -4/tau:freq_del:4/tau;
delay = linspace(-N,N,nfft);
figure(1)
mesh(freq,delay,ambig ./ max(max(ambig)))
% colormap([.5 .5 .5])
% colormap(gray)
axis tight
xlabel('frequency')
ylabel('delay')
zlabel('ambiguity function a PRN code')
figure(2)
plot(delay,ambig(:,51)/(max(max(ambig))),'k')
xlabel('delay')
ylabel('normalized amibiguity cut for f=0')
grid
axis tight
figure(3)
contour(freq,delay,ambig ./ max(max(ambig)))
axis tight
% colormap([.5 .5 .5])
% colormap(gray)
xlabel('frequency')
ylabel('delay')

test.m

close all
clear all
u_31 = [1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 -1 1 1 -1 -1 -1 1 1 1 1 1 -1 -1 1 1 -1 1 -1 -1];
x = prn_ambig(u_31);

u_31 是一个向量,它定义了以 “1” 和 “-1” 表示的输入最大长度码(序列)

②、仿真结果

1)PRN 码的模糊函数图

2)PRN 码的模糊函数切面图

PRN 码的零多普勒模糊函数图

3)PRN 码的等高线图

三、资源自取

雷达模糊度函数思维导图

目录
相关文章
|
8天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
10天前
|
算法
超市火灾烟雾蔓延及人员疏散的matlab模拟仿真,带GUI界面
本项目基于MATLAB2022A开发,模拟了大型商业建筑中火灾发生后的人员疏散与烟雾扩散情况。算法通过设定引导点指导人员疏散,考虑视野范围、随机运动及多细胞竞争同一格点的情况。人员疏散时,根据是否处于烟雾区调整运动策略和速度,初始疏散采用正态分布启动。烟雾扩散模型基于流体方程,考虑了无风环境下的简化。
|
6天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
6天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
9天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
216 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
139 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
105 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)