OFDM深入学习及MATLAB仿真(二)

简介: OFDM深入学习及MATLAB仿真

OFDM深入学习及MATLAB仿真(一)https://developer.aliyun.com/article/1472348


六、OFDM 的完整仿真过程

1、MATLAB 源码

OFDM.m

clc;
clear;
%全文原理介绍见:https://zhuanlan.zhihu.com/p/57967971
%————————————————————————————————————————————————————————%
%q1:ifft点数难道不是应该等于子载波数吗?子载波数与ifft点数的关系?
%a:ifft点数等于子载波数
%q2:对矩阵进行fft?
%a:y可以是一向量或矩阵,若y为向量,则Y是y的FFT,并且与y具有相同的长度。若y为一矩阵,则Y是对矩阵的每一列向量进行FFT。
%q3:怎么对ofdm信号上变频
%————————————————————————————————————————————————————————%
%% 参数设置
N_sc=52;      %系统子载波数(不包括直流载波)、number of subcarrierA
N_fft=64;            % FFT 长度
N_cp=16;             % 循环前缀长度、Cyclic prefix
N_symbo=N_fft+N_cp;        % 1个完整OFDM符号长度
N_c=53;             % 包含直流载波的总的子载波数、number of carriers
M=4;               %4PSK调制
SNR=0:1:25;         %仿真信噪比
N_frm=10;            % 每种信噪比下的仿真帧数、frame
Nd=6;               % 每帧包含的OFDM符号数;一帧OFDM通常由多个连续的OFDM符号组成 ;OFDM符号时长 = 子载波时长 × 子载波数量;一帧由多个连续的OFDM符号组成,每个OFDM符号由多个子载波组成。
P_f_inter=6;      %导频间隔
data_station=[];    %导频位置
L=7;                %卷积码约束长度
tblen=6*L;          %Viterbi译码器回溯深度
stage = 3;          % m序列的阶数
ptap1 = [1 3];      % m序列的寄存器连接方式
regi1 = [1 1 1];    % m序列的寄存器初始值
%% 基带数据数据产生
P_data=randi([0 1],1,N_sc*Nd*N_frm);
%% 信道编码(卷积码、或交织器)
%卷积码:前向纠错非线性码
%交织:使突发错误最大限度的分散化
%[133 171]卷积码其实是卷积码(2,1,7)的最佳编码形式
trellis = poly2trellis(7,[133 171]);       %(2,1,7)卷积编码;首先是7,他是1*k的vector,此处k为1,[171 133]是k*n的vector,此处n就是2,那么这个编码就是1/2码率的卷积码,这个卷积码的约束长度是7,也就是输出与前7个输入相关,133,171是十进制数,代表的是前面寄存器的抽头位置。
code_data=convenc(P_data,trellis);
%% qpsk调制
data_temp1= reshape(code_data,log2(M),[])';             %以每组2比特进行分组,M=4
data_temp2= bi2de(data_temp1);                             %二进制转化为十进制
modu_data=pskmod(data_temp2,M,pi/M);              % 4PSK调制
% figure(1);
scatterplot(modu_data),grid;                  %星座图(也可以取实部用plot函数)
%% 扩频
%————————————————————————————————————————————————————————%
%扩频通信信号所占有的频带宽度远大于所传信息必需的最小带宽
%根据香农定理,扩频通信就是用宽带传输技术来换取信噪比上的好处,这就是扩频通信的基本思想和理论依据。
%扩频就是将一系列正交的码字与基带调制信号内积
%扩频后数字频率变成了原来的m倍。码片数量 = 2(符号数)* m(扩频系数)
%————————————————————————————————————————————————————————%
% 由于m序列的均衡性、游程分布和自相关特性与随机序列的基本性质极其相似,所以通常将m序列称为为噪声(PN)序列,或称为伪随机序列
% 扩频通信的主要目的是提高通信信号的抗干扰性和保密性。通过在发送信号时对其进行频率扩展,使得信号在宽带频谱上占用更大的带宽,从而可有效抵消窄带干扰信号对于通信信号的影响
code = mseq(stage,ptap1,regi1,N_sc);     % 扩频码的生成
code = code * 2 - 1;         %将1、0变换为1、-1
modu_data=reshape(modu_data,N_sc,length(modu_data)/N_sc);
spread_data = spread(modu_data,code);        % 扩频
spread_data=reshape(spread_data,[],1);
%% 插入导频  梳状结构
P_f=3+3*1i;                       %Pilot frequency
P_f_station=1:P_f_inter:N_fft;%导频位置(导频位置很重要,why?)
pilot_num=length(P_f_station);%导频数量
for img=1:N_fft                        %数据位置
    if mod(img,P_f_inter)~=1          %mod(a,b)就是求的是a除以b的余数
        data_station=[data_station,img];
    end
end
data_row=length(data_station);
data_col=ceil(length(spread_data)/data_row);
pilot_seq=ones(pilot_num,data_col)*P_f;%将导频放入矩阵
data=zeros(N_fft,data_col);%预设整个矩阵
data(P_f_station(1:end),:)=pilot_seq;%对pilot_seq按行取
if data_row*data_col>length(spread_data) % 判断数据的总数是否大于扩展数据的长度,如果是,说明书菊矩阵中还有空余位置,需要补零
    data2=[spread_data;zeros(data_row*data_col-length(spread_data),1)];%将数据矩阵补齐,补0是虚载频~
end
%% 串并转换
data_seq=reshape(data2,data_row,data_col);
data(data_station(1:end),:)=data_seq;%将导频与数据合并
%% IFFT
ifft_data=ifft(data); 
%% 插入保护间隔、循环前缀
Tx_cd=[ifft_data(N_fft-N_cp+1:end,:);ifft_data];%把ifft的末尾N_cp个数补充到最前面
%% 并串转换
Tx_data=reshape(Tx_cd,[],1);%由于传输需要
%% 信道(通过多经瑞利信道、或信号经过AWGN信道)
 Ber=zeros(1,length(SNR));
 Ber2=zeros(1,length(SNR));
for jj=1:length(SNR)
    rx_channel=awgn(Tx_data,SNR(jj),'measured');%添加高斯白噪声
    
%% 串并转换
    Rx_data1=reshape(rx_channel,N_fft+N_cp,[]);
    
%% 去掉保护间隔、循环前缀
    Rx_data2=Rx_data1(N_cp+1:end,:);
%% FFT
    fft_data=fft(Rx_data2);
    
%% 信道估计与插值(均衡)
    data3=fft_data(1:N_fft,:); 
    Rx_pilot=data3(P_f_station(1:end),:); %接收到的导频
    h=Rx_pilot./pilot_seq; % 将接收到的导频除以发送的导频(pilot_seq)来估计信道的频域响应(h)
    % 将估计得到的信道响应(h)插值到数据子载波的位置(data_station)上,并得到最终的信道估计结果(H)。
    H=interp1( P_f_station(1:end)',h,data_station(1:end)','linear','extrap');%分段线性插值:插值点处函数值由连接其最邻近的两侧点的线性函数预测。对超出已知点集的插值点用指定插值方法计算函数值
%% 信道校正 
    % 目的是消除信道引起的失真和干扰,使接收到的数据恢复到发送时的原始状态。
    % 信道校正的原理是利用估计得到的信道响应(H)对接收信号进行除法运算。由于信道引起的失真和干扰可以看作是对发送信号的乘性影响,
    % 通过将接收信号与信道响应的倒数相乘,可以抵消信道引起的乘性失真和干扰。这样,经过信道校正后的数据(data_aftereq)将尽可能接近发送时的原始数据。
    data_aftereq=data3(data_station(1:end),:)./H;
%% 并串转换
    data_aftereq=reshape(data_aftereq,[],1);
    data_aftereq=data_aftereq(1:length(spread_data));
    data_aftereq=reshape(data_aftereq,N_sc,length(data_aftereq)/N_sc);
    
%% 解扩
    demspread_data = despread(data_aftereq,code);       % 数据解扩
%     if jj == 10
%         tmp = reshape(demspread_data,[],1);
%         scatterplot(tmp),grid; 
%     end
        
%% QPSK解调
    demodulation_data=pskdemod(demspread_data,M,pi/M);    
    De_data1 = reshape(demodulation_data,[],1);
    De_data2 = de2bi(De_data1);
    De_Bit = reshape(De_data2',1,[]);
%% (解交织)
%% 信道译码(维特比译码)
    trellis = poly2trellis(7,[133 171]);
    rx_c_de = vitdec(De_Bit,trellis,tblen,'trunc','hard');   %硬判决
%% 计算误比特率
    [err,Ber2(jj)] = biterr(De_Bit(1:length(code_data)),code_data);%译码前的误码率
    [err, Ber(jj)] = biterr(rx_c_de(1:length(P_data)),P_data);%译码后的误码率
end
 figure(2);
 semilogy(SNR,Ber2,'b-s');
 hold on;
 semilogy(SNR,Ber,'r-o');
 hold on;
 legend('4PSK调制、卷积码译码前(有扩频)','4PSK调制、卷积码译码后(有扩频)');
 hold on;
 xlabel('SNR');
 ylabel('BER');
 title('AWGN信道下误比特率曲线');
 figure(3)
 subplot(2,1,1);
 x=0:1:30;
 stem(x,P_data(1:31));
 ylabel('amplitude');
 title('发送数据(以前30个数据为例)');
 legend('4PSK调制、卷积译码、有扩频');
 subplot(2,1,2);
 x=0:1:30;
 stem(x,rx_c_de(1:31));
 ylabel('amplitude');
 title('接收数据(以前30个数据为例)');
 legend('4PSK调制、卷积译码、有扩频');

2、程序流程

程序流程思维导图文末资源自取。

3、仿真结果

①、QPSK 星座图

基带数据经过信道编码后进行 QPSK 调制后的星座图如下所示:

QPSK 星座图

基带数据 -> 信道编码 -> QPSK 调制 -> 扩频 -> 插入导频 -> 串并转换 -> IFFT -> 插入保护间隔、循环前缀 -> 并串转换 -> 信道 -> 串并转换 -> 去掉保护间隔、循环前缀 -> FFT -> 信道估计与插值 -> 信道校正 -> 并串转换 -> 解扩频 后信噪比为 10dB 的星座图如下:

②、AWGN 信道下误比特率曲线

分析:信噪比越大,误码率越低

③、发送信号和接收信号对比

分析:对比上下两个图,可以看出信号解调后完全一样。

七、资源自取

以下部分源码来源于知乎子木前辈,对其中的代码注释进行了更详细的标注,思维导图自己制作,有需要的朋友自行取用。

OFDM深入学习及MATLAB仿真源码

参考文献

1、多径效应、符号内干扰、符号间干扰ISI、ICI

2、OFDM完整仿真过程及解释(MATLAB)

3、【学习笔记】OFDM的原理和技术介绍以及仿真结果分析附代码–MATLAB

目录
相关文章
|
7天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
4天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
7天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
该程序基于ACO蚁群优化算法解决VRPSD问题,使用MATLAB2022a实现,输出优化收敛曲线及路径规划结果。ACO通过模拟蚂蚁寻找食物的行为,利用信息素和启发式信息指导搜索,有效求解带时间窗约束的车辆路径问题,最小化总行程成本。
|
5天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
5天前
|
算法 C++ Windows
基于离散差分法的复杂微分方程组求解matlab数值仿真
本程序基于离散差分法求解复杂微分方程组,将连续微分方程转化为差分方程,采用一阶显式时间格式和一阶偏心空间格式。在MATLAB2022a上测试通过,展示了运行结果。
|
10天前
|
机器学习/深度学习 存储 算法
基于圆柱体镜子和光线跟踪实现镜反射观测全景观图的matlab模拟仿真
本程序基于圆柱体镜子和光线跟踪技术,实现镜反射观测全景观图。通过模拟光线在场景与圆柱镜面之间的交互,构建出360°全景视图。核心算法涉及几何光学、计算机图形学和数值计算,适用于MATLAB 2022a版本。
|
10天前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析码长,码率,信道对译码性能的影响,对比卷积码,turbo码以及BCH码
本程序系统基于BP译码的LDPC误码率MATLAB仿真,分析不同码长、码率、信道对译码性能的影响,并与卷积码、Turbo码及BCH编译码进行对比。升级版增加了更多码长、码率和信道的测试,展示了LDPC码的优越性能。LDPC码由Gallager在1963年提出,具有低复杂度、可并行译码等优点,近年来成为信道编码研究的热点。程序在MATLAB 2022a上运行,仿真结果无水印。
47 0
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
161 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
116 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
84 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码