OFDM深入学习及MATLAB仿真(一)

简介: OFDM深入学习及MATLAB仿真

前言

前面对 OFDM 的学习及了解还是比较浅显的,例如没有考虑到其中涉及的技术,例如保护间隔、信道编码、扩频、导频相关技术,本文通过学习这些技术,并进行 OFDM 的完整仿真过程。

之前博客中已经介绍过的原理性东西这里就不再重复阐述了,对于之前没有讲过的概念会重点讲述,可以详见我之前的博客:

一个完整的 OFDM 系统的发射机和接收机如下图所示:

  • 过程介绍–发送端: OFDM 发射机的输入位首先要进行编码(有冗余),以减少特定信道的误差,编码后的位通过调制在相位和正交(IQ)平面上映射成星座,得到的 IQ 数据用复数表示。在 IQ 数据中插入导频和保护频带,形成频域 OFDM 符号。频域 OFDM 符号通过反离散傅里叶变换(IDFT)转化为时域,再通过并行到串行(P/S)的转换转化为一维(1D)。循环前缀(Cyclic Prefix,CP),是将时域 IQ 数据从末尾的一段复制到时域 IQ 数据的开头,形成一个完整的时域 OFDM 符号,然后,基带 IQ 数据流被向上转换为射频(RF),并通过 RF 前端进行空中广播。通过无线信道传播的无线电波被接收机的射频前端接收并下变频为基带数字 IQ 数据。
  • 过程介绍–接收端:载波同步器回收时域 OFDM 符号,并将其发送到基带接收器。在接收机上,首先去除 CP,其余的 IQ 数据通过 FFT 转换到频域。信道均衡器估计信道的响应,并对接收到的被衰落信道扭曲的 IQ 数据进行均衡。接下来,经过均衡的频域 IQ 数据被解调为软位(浮点数),再由信道解码器将其进一步解码为二进制位。输出的比特流被送到下一层,并回收成数据包。请注意,信道均衡是针对衰减而不是加性高斯白噪声(AWGN)信道的。
  • 这里理解为传输的频域信号是因为IFFT是从频域到时域,实际上这里 IFFT 充当的是一个实现子载波正交的作用。

一、OFDM 基本原理及概念

1、OFDM 简介

OFDM(Orthogonal Frequency Division Multiplexing),即正交频分复用,是一种用于数字通信的调制技术,它将数据流分为多个子载波,每个子载波都以不同的频率传输数据,被广泛应用于现代数字通信系统中,如 Wi-Fi,DAB,DVB,LTE,5G NR 等。OFDM 符号是 OFDM 技术中的一个重要组成部分,它是在子载波上传输信息的基本单位。

2、子载波

子载波(subcarrier)是数字通信中的一个概念,它是在正交频分复用(OFDM)系统中使用的一种调制技术。在 OFDM 系统中,将宽带信号分成多个独立的子信道,每个子信道都可以看作是一个独立的信号载波,称为子载波。

在 OFDM 系统中,将频率范围分成多个子载波,每个子载波都有一个固定的频率和相位,可以独立传输数据,如 5G NR 系统中,将 100MHz 的带宽,按照 15KHz 的子载波带宽进行分配,可以分成 6666 个子载波,而 4G LTE 20MHz 系统中的子载波仅有 1333 个。每个子载波的频带宽度比整个带宽窄很多,这样可以减少频带的浪费,并且在接收端可以更容易地进行信号分离和恢复。

3、符号

从时域上来看,ODFM 符号就是一个时间长度。利用了 OFDMA 原理中的串并变换技术,原本高速的串行数据被转换成低速的并行数据发送,原来传 N 个符号(数字映射后的符号,譬如每个 QPSK 符号包含 2 个比特)的时间,现在相当于只传一个符号(但由于并行传输,N 个子载波上各传一个,相当于同时传 N 个,只是这 N 个子载波之间互相独立,并且所代表的数据仅是原始数据中的一小部分)。所用的这个时间称为 OFDM 符号长度,或 OFDM 符号周期。

OFDM 符号由一组正交的子载波组成,每个子载波上携带独立的信息。因为子载波之间正交,所以它们可以在同一频段上同时传输信息,从而实现了高效的频谱利用。OFDM 符号通常使用快速傅里叶变换(FFT)来实现,将时域的数据序列转换为频域的子载波信号。OFDM 符号的特点是抗多径衰落和频偏干扰能力强,同时也容易实现频率同步。

在实际中,为了消除符号间的干扰,还要在符号间插入循环前缀(CP),即经过 IFFT 之后的发送数据经过并串变换,把位于最末的 CP 长度的符号拷贝到 OFDM 符号的起始端,用于消除符号间干扰。这时,实际的每个 OFDM 符号的长度变为 T s y m b o l + T c p T_{symbol}+T_{cp}Tsymbol+Tcp ,你所看到的 IFFT 长度 + CP 长度是以 OFDM 符号周期为单位的表示方法。

4、子载波间隔与符号长度之间的关系

OFDM 技术中,符号长度(也称为时域上的时间长度)为 T 的子载波在频域上是一个 Sinc 函数,在 1/T 处过零。为了满足正交性,各个子载波的峰值应该对应于其他子载波的过零点。因此,子载波的间隔应为 1/T。例如,在 5G NR中,子载波的间隔为 15kHz,因此 OFDM 的符号长度为 1/15kHz=66.7us。这个长度是子载波的调制符号时间。

二、涉及的技术

1、保护间隔

  • 作用:多径信道会对 OFDM 符号造成 ISI 影响,破坏了子载波间的正交性。故需要采取一些方法来消除多径信道带来的符号间干扰(ISI)影响,即插入保护间隔
  • 方法
  • 一种是补零(zp),即在保护间隔中填充 0;
  • 另一种是插入循环前缀(cp)或循环后缀(cs)实现OFDM的循环扩展(为了某种连续性)。

zp 是在保护间隔内不插入任何信号,但是在这种情况下,由于多径传播的影响,会产生载波间干扰(ICI),即不同的子载波间会产生干扰。

一般采用 cp。cp 是将 OFDM 后部的采样复制到前面,长度为 T c p T_{cp}Tcp,故每个符号的长度为 T s y m = T s u b + T c p T_{sym}=T_{sub}+T_{cp}Tsym=Tsub+TcpT s u b T_{sub}Tsub 为数据部分子载波数。T c p T_cpTcp 大于或等于多径时延,符号间的 ISI 影响将被限制在保护间隔中,因此不会影响下一个 OFDM 的 FFT 变换。

上面所讲可以参考下面的文章,文章中讲解的很详细:

多径效应、符号内干扰、符号间干扰ISI、ICI

2、交织

  • 作用:交织的作用是将突发错误转换为随机错误,有利于前向纠错码的译码,提高了整个通信系统的可靠性。
  • 原理:交织技术是改变数据流的传输顺序,将突发的错误随机化,提高纠错编码的有效性。
  • 方法:交织由两个变换过程组成。
  • 第一次变换保证了相邻的编码比特被映射到不相邻的子载波上。
  • 第二次变换保证了相邻的编码比特被分别映射到星座图的重要和非重要比特上,避免出现长时间的低比特位映射。
  • 交织块的长度: Ncbps,对 qpsk、16qam、64qam 分别为 2、4、6,s=Ncbps/2,d=16。

3、信道编码

  • 作用:由于移动通信存在干扰和衰落,在信号传输过程中将出现差错,故对数字信号必须采用纠、检错技术,即纠、检错编码技术,以增强数据在信道中传输时抵御各种干扰的能力,提高系统的可靠性。
  • 原理:信道编码技术是通过给原数据添加冗余信息,从而获得纠错能力,适合纠正非连续的少量错。
  • 方法
  • 卷积编码是现代数字通信系统中常见的一种前向纠错码,区别于常规的线性分组码,卷积编码的码字输出不仅与当前时刻的信息符号输入有关,还与之前输入的信息符号有关。
  • 这里的信道编码一般采用卷积编码,Viterbi 译码。

有关信道编码的知识可以参考我之前写的文章信道编码译码及MATLAB仿真

4、扩频

  • 本质:“扩频通信技术是一种信息传输方式,其信号所占有的频带宽度远大于所传信息必需的最小带宽;频带的扩展是通过一个独立的码序列来完成,用编码及调制的方法来实现的,与所传信息数据无关;在接收端则用同样的码进行相关同步接收、解扩及恢复所传信息数据”
  • 优点和作用
  • 根据香农定理,带宽和信噪比可用互换,扩频扩展了带宽,则对信噪比的要求可降低 。
  • 对背景的噪声(noise)、干扰(interference)以及自体多路径干扰(Multipath interference)有免疫力。
  • 对人为的刻意干扰(jamming)信号有良好的抵御能力

5、导频

  • 本质:导频不携带信息,导频是双方已知的数据,是用来做信道估计的。
  • 原理:将训练信号(导频)插入帧中,以便接收器可以根据导频和数据类似地失真的假设来估计信道响应。 设计了一种适当的导频模式来满足这种假设。 OFDM系统中的典型导频模式为:块,梳状和分散式。如下图所示。
  • 使用原理:在接收机中,虽然利用接收到的段训练序列、长训练序列可以进行信道均衡、频率偏差校正,但符号还会存在一定的剩余偏差,且偏差会随着时间的累积而累积,会造成所有子载波产生一定的相位偏移。因此,还需要不断地对参考相位进行跟踪。要能实现这个功能,需要在子载波中插入导频符号。

6、RF(射频)调制

  • 方法:OFDM 调制器的输出产生了一个基带信号,将此基带信号与所需传输的频率进行混频操作,利用模拟技术或数字上变频可完成。
  • 原理:由于数字调制技术提高了处理 I、Q 信道之间的匹配性和数字 IQ 调制器相位的准确性,将会更加精确。

7、信道估计

  • 本质:在OFDM系统的相干检测中需要对信道进行估计,获得详细的信道信息,从而在接收端正确地解调出发射信号,是衡量一个无线通信系统性能的重要指标。

三、变量间的关系

image.png

四、IEEE 802.11a WLAN PHY 层标准

IEEE 802.11a WLAN PHY层标准的主要参数:


image.png

image.png

采用64点IFFT意味着系统的采样间隔为0.05us,这样采样频率至少应该是20M samples/s

五、OFDM 基本参数的选择

1、基本参数

各种 OFDM 参数的选择就是需要在多项要求冲突中进行折衷考虑。通常来说,首先要确认 3 个参数:带宽、比特率、及保护间隔

  • 保护间隔: 按照惯例,保护间隔的时间长度应该为应用移动环境信道的时延扩展均方根值的 2~4 倍。
  • OFDM 符号周期长度:确定保护间隔之后,则 OFDM 符号周期长度就确定了。为了最大限度的减少由于插入保护比特所带来的信噪比的损失,OFDM 符号周期长度远远大于保护间隔长度。但是符号周期又不能任意大,否则就需要更多的子载波,带宽不变,子载波间隔就变小,系统的实现复杂度就提高了,而且还加大了系统的峰值平均功率比,同时系统对频率偏差更加敏感。因此,一般选择符号周期长度是保护间隔的 5 倍,这样,由于插入保护比特所造成的信噪比损耗只有 1dB 左右。
  • 子载波的数量:确定保护间隔和符号周期长度之后,子载波的数量可由 − 3 d B -3dB3dB 带宽除以子载波间隔(即去掉保护间隔之后的符号周期的倒数)得到。或者可由所要求比特速率除以每个子信道的比特速率来确定子载波的数量。每个信道中所传输的比特速率可由调制类型、编码速率、和符号速率来确定。

2、有用符号持续时间T

T 对子载波之间间隔、译码的等待周期都有影响,为了保持数据的吞吐量,子载波数目和 FFT 的长度要有相对较大的数量,这就导致符号持续时间变长。总之,符号周期长度的选择以保证信道的稳定为前提。

3、子载波数

N=1/T

其数值与 FFT 处理过的复数点数相对应,需适应数据速率和保护间隔的要求。

4、调制模式

OFDM系统的调制模式基于功率和频谱利用率来选择,可采用 qam、psk。

为了使所有的点有相同的平均功率,二进制序列映射后的复数要归一化。(BPSK\QPSK\16QAM\64QAM分别对应乘以1、1/根号2、1/根号10、1/根号42),解调的时候再变回去。

5、具体实例

如下要求:(1)比特率为25Mbit/s(2)可容忍的时延扩展为200ns(3)带宽小于18MHz。

  • ①、由 200ns 时延扩展得保护间隔为 800ns;
  • ②、由保护间隔 800ns 得符号周期长度 6*800ns=4.8us;
  • ③、子载波的间隔选取 4.8-0.8=4us 的倒数,即 250KHz;
  • ④、由所要求的比特速率与OFDM符号速率的比值,每个符号需要传送的比特:(25Mbit/s)/(1/4.8us)=120 bit。
  • ⑤、为了完成上面 120bit 符号,有两种选择:利用 16QAM 和码率为 1/2 的编码方法,这样每个子载波携带 2bit 的有用信息,因此需要 60 个子载波;另一种是利用 QPSK 和码率为 3/4 的编码方法,每个子载波携带 1.5bit 信息。因此需要 80 个子载波,然而 80 个子载波意外着带宽:80*250KHz=20MHz,大于所给带宽要求,故取第一种,即 60 个子载波。可利用 64 点 IFFT 来实现,剩余 4 个子载波补 0。


OFDM深入学习及MATLAB仿真(二)https://developer.aliyun.com/article/1472349

目录
相关文章
|
13天前
|
传感器 算法 vr&ar
六自由度Stewart控制系统matlab仿真,带GUI界面
六自由度Stewart平台控制系统是一种高精度、高稳定性的运动模拟装置,广泛应用于飞行模拟、汽车驾驶模拟、虚拟现实等领域。该系统通过六个独立的线性致动器连接固定基座与移动平台,实现对负载在三维空间内的六个自由度(三维平移X、Y、Z和三维旋转-roll、pitch、yaw)的精确控制。系统使用MATLAB2022a进行仿真和控制算法开发,核心程序包括滑块回调函数和创建函数,用于实时调整平台的位置和姿态。
|
7天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
8天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
6天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
9天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
7天前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
8天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
8天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
25 3
|
13天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
12天前
|
机器学习/深度学习 存储 算法
基于Actor-Critic(A2C)强化学习的四旋翼无人机飞行控制系统matlab仿真
基于Actor-Critic强化学习的四旋翼无人机飞行控制系统,通过构建策略网络和价值网络学习最优控制策略。MATLAB 2022a仿真结果显示,该方法在复杂环境中表现出色。核心代码包括加载训练好的模型、设置仿真参数、运行仿真并绘制结果图表。仿真操作步骤可参考配套视频。
30 0