【数据结构】八大排序之计数排序算法

简介: 【数据结构】八大排序之计数排序算法

一.计数排序简介及思想

计数排序(Counting Sort)又称为鸽巢原理,是对哈希直接定址法的变形应用.

计数排序的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

算法动图演示如下:

计数排序的实现思路:

  1. 统计每个数据出现的次数
  2. 按序输出

虽然计数排序实现思路比较简单,但我们还是有一些细节需要注意:

绝对映射和相对映射:

  • 绝对映射:如下图,数据的数值和数组下标是一一对应的,这种计数方式叫做绝对映射
  • 绝对映射的缺点:开辟数组占用空间大,不能够排负数
  • 相对映射:如下图,数据在数组中是按照数值的相对大小来映射的,这种计数方式叫做相对映射. 相对映射较好的解决了绝对映射的缺点,但当遇到待排数据分布较为分散且跨度较大时,就不太适合使用计数排序来进行排序了.

二.计数排序代码实现

算法实现步骤:(以升序为例)

  1. 遍历待排数组,找出数组中的最大值max和最小值min.
  2. 开辟大小为max-min+1大小的数组用以计数.
  3. 遍历数组计数.
  4. 将计数数组中记录的数据恢复到原数组中.

综上,计数排序的代码实现如下:

//计数排序
void CountSort(int* a, int n)
{
  int max = a[0], min = a[0];
  for (int i = 1; i < n; i++)
  {
    if (a[i] > max)
    {
      max = a[i];
    }
    if (a[i] < min)
    {
      min = a[i];
    }
  }
 
  int range = max - min + 1;
 
  int* countA = (int*)calloc(sizeof(int) , range);
  if (countA == NULL)
  {
    perror("calloc fail\n");
    return;
  }
 
  //计数
  for (int i = 0; i < n; i++)
  {
    countA[a[i] - min]++;//映射的下标++就行
  }
 
  //排序
  int j = 0;
  for (int i = 0; i < range; i++)
  {
    while (countA[i]--)
    {
      a[j++] = i + min;
    }
  }
 
  free(countA);
}

三.计数排序复杂度分析

📌时间复杂度

计数排序的时间复杂度主要取决于两部分,一是前期遍历数组找出最大值和最小值,这里的时间复杂度为n,二是遍历数组计数,这里的时间复杂度还是n,三是遍历计数数组排序,这里的时间复杂度为range(即max-min),因此我们通常认为,计数排序的时间复杂度为O(n+range);当range接近n时,我们其实可以认为计数排序的时间复杂度为O(n).

📌空间复杂度

计数排序的空间复杂度主要取决于动态开辟的计数数组的大小,即range,因此计数排序的空间复杂度为O(range).


结语

希望这篇计数排序算法详解能对大家有所帮助,欢迎大佬们留言或私信与我交流.

有关更多排序相关的知识可以移步:

https://blog.csdn.net/weixin_72357342/article/details/135038495?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22135038495%22%2C%22source%22%3A%22weixin_72357342%22%7D&fromshare=blogdetail

学海漫浩浩,我亦苦作舟!关注我,大家一起学习,一起进步!


数据结构排序算法篇思维导图:



相关文章
|
14天前
|
存储 机器学习/深度学习 算法
C 408—《数据结构》算法题基础篇—链表(下)
408考研——《数据结构》算法题基础篇之链表(下)。
76 29
|
14天前
|
存储 机器学习/深度学习 算法
C 408—《数据结构》图、查找、排序专题考点(含解析)
408考研——《数据结构》图,查找和排序专题考点选择题汇总(含解析)。
66 29
|
14天前
|
存储 算法 C语言
C 408—《数据结构》算法题基础篇—链表(上)
408考研——《数据结构》算法题基础篇之链表(上)。
72 25
|
14天前
|
存储 人工智能 算法
C 408—《数据结构》算法题基础篇—数组(通俗易懂)
408考研——《数据结构》算法题基础篇之数组。(408算法题的入门)
58 23
|
1月前
|
存储 人工智能 算法
【C++数据结构——内排序】二路归并排序(头歌实践教学平台习题)【合集】
本关任务是实现二路归并算法,即将两个有序数组合并为一个有序数组。主要内容包括: - **任务描述**:实现二路归并算法。 - **相关知识**: - 二路归并算法的基本概念。 - 算法步骤:通过比较两个有序数组的元素,依次将较小的元素放入新数组中。 - 代码示例(以 C++ 为例)。 - 时间复杂度为 O(m+n),空间复杂度为 O(m+n)。 - **测试说明**:平台会对你编写的代码进行测试,提供输入和输出示例。 - **通关代码**:提供了完整的 C++ 实现代码。 - **测试结果**:展示代码运行后的排序结果。 开始你的任务吧,祝你成功!
36 10
|
1月前
|
搜索推荐 算法 数据处理
【C++数据结构——内排序】希尔排序(头歌实践教学平台习题)【合集】
本文介绍了希尔排序算法的实现及相关知识。主要内容包括: - **任务描述**:实现希尔排序算法。 - **相关知识**: - 排序算法基础概念,如稳定性。 - 插入排序的基本思想和步骤。 - 间隔序列(增量序列)的概念及其在希尔排序中的应用。 - 算法的时间复杂度和空间复杂度分析。 - 代码实现技巧,如循环嵌套和索引计算。 - **测试说明**:提供了测试输入和输出示例,帮助验证代码正确性。 - **我的通关代码**:给出了完整的C++代码实现。 - **测试结果**:展示了代码运行的测试结果。 通过这些内容,读者可以全面了解希尔排序的原理和实现方法。
58 10
|
1月前
|
搜索推荐 C++
【C++数据结构——内排序】快速排序(头歌实践教学平台习题)【合集】
快速排序是一种高效的排序算法,基于分治策略。它的主要思想是通过选择一个基准元素(pivot),将数组划分成两部分。一部分的元素都小于等于基准元素,另一部分的元素都大于等于基准元素。然后对这两部分分别进行排序,最终使整个数组有序。(第一行是元素个数,第二行是待排序的原始关键字数据。本关任务:实现快速排序算法。开始你的任务吧,祝你成功!
41 7
|
1月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
49 2
|
2天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。