基于SVM支持向量机的数据预测matlab仿真

简介: - **算法效果预览**:展示了6张支持向量机(SVM)在Matlab 2022a中运行的图像,包括分类或预测结果的比较。- **软件版本**:Matlab 2022a。- **算法理论**:SVM是监督学习工具,用最大间隔超平面做分类,通过核函数处理非线性问题。- **核心程序片段**:展示了一个SVM预测模型的MATLAB代码,包括: - 绘制真实值与训练预测值的对比图。 - 计算并可视化31个城市训练数据的RMSE误差。 - 使用模拟数据对2017-2020年进行预测。 - 显示特定城市的预测结果及误差条形图。 - 保存最终的预测数据。

1.算法运行效果图预览
1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
支持向量机是一种监督学习方法,主要用于分类和回归分析。它基于结构风险最小化原则构建最优超平面以实现最大间隔分类,并且在处理非线性问题时通过核函数映射到高维特征空间来实现线性可分。
image.png
image.png

4.部分核心程序

figure;
plot(Year,dn{i},'k-o');
hold on
plot(Year,Predict1{i},'r-s');
grid on
xlabel('year');
ylabel('value');
legend('真实值','训练预测值');


%获得误差
for i = 1:31
    error(i) = mean(abs(dn{i}-Predict1{i}));
    RMSE(i) = sqrt(sum(abs(dn{i}-Predict1{i}).^2)/6);
end
figure;
bar(RMSE);
title('31个城市训练数据的RMSE误差值');

%使用训练模型进行预测
%输入2017年到2020的X变量作为采集数据
%从excel中没提供这个数据集,所以需要这里先用模拟的数据。这里采用拟合法,得到未来几年大概的X值
for i = 1:31%31个城市
    tmps1 = Xn{i};
    for j = 1:24
        tmps2 = tmps1(:,j);
        X     = [Year'];
        %进行拟合
        X2    = 2018;
        tmps4(:,j) = [tmps2;tmps2(end)+0.001*(X2-2016)*(tmps2(end)-tmps2(end-1))];%调节过大的幅度
    end
    Xn2{i} = tmps4;
end


%进行预测
for i = 1:31%31个城市
    [Predict2{i},error2] = svmpredict([1;1;1;1;1;1;1],Xn2{i},model{i});
end


%用北京的数据进行显示预测结果
Year2=[2011,2012,2013,2014,2015,2016,2018];

K=1;%设置不同的K,选择显示不同的城市
.......................................................
for i = 1:31
figure;
subplot(211);
plot(Year,dn{i},'bs','LineWidth',1,...
                       'MarkerSize',10);
hold on
plot(Year2,Predict2{i},'r-s','LineWidth',1,...
                       'MarkerEdgeColor','k',...
                       'MarkerFaceColor','g',...
                       'MarkerSize',4)
grid on
xlabel('year');
ylabel('value');
legend('真实值','2018预测值');
title([NAME{i},'预测值']);
subplot(212);
bar([abs(dn{i}-Predict2{i}(1:end-1));0]);
title('误差');


end

%保存数据
XX=[];
for i = 1:31
    XX=[XX,Predict2{i}(end)];
end
%注意,XX就是最后的2020年数据Y
XX
相关文章
|
1天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+LDPC编译码的16QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,适用于无人机、视频监控等场景。系统采用16QAM调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB 2022a仿真结果显示图像传输效果良好,附带的操作视频详细介绍了仿真步骤。核心代码实现了图像的二进制转换、矩阵重组及RGB合并,确保图像正确显示并保存为.mat文件。
28 20
|
1天前
|
算法 人机交互 数据安全/隐私保护
基于图像形态学处理和凸包分析法的指尖检测matlab仿真
本项目基于Matlab2022a实现手势识别中的指尖检测算法。测试样本展示无水印运行效果,完整代码含中文注释及操作视频。算法通过图像形态学处理和凸包检测(如Graham扫描法)来确定指尖位置,但对背景复杂度敏感,需调整参数PARA1和PARA2以优化不同手型的检测精度。
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PPO强化学习的buckboost升降压电路控制系统matlab仿真,对比PID控制器
本项目利用MATLAB 2022a对基于PPO强化学习的Buck-Boost电路控制系统进行仿真,完整代码无水印。通过与环境交互,智能体学习最优控制策略,实现输出电压稳定控制。训练过程包括初始化参数、收集经验数据、计算优势和奖励函数并更新参数。附带操作视频指导,方便用户理解和应用。
25 12
|
1天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
242 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
145 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
113 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章