神经网络分类算法的应用及其实现

简介: 神经网络分类算法的应用及其实现

神经网络分类算法的应用及其实现


神经网络算法特点


我们知道,深度学习的本质就是神经网络算法(深度学习是神经网络算法的一个分支)。理论上来说,在数据量和隐藏层足够多的情况下,神经网络算法能够拟合任何方程(函数)。神经网络算法是一种具有网络结构的算法模型,这决定了它具有非常好的延展性,通过调节神经网络中各个节点的权值参数使得分类效果明显提升。总的来说,神经网络算法具有以下特点:


1) 黑盒算法


神经网络算法,也被称为“黑盒算法”,这是因为人们无法从外部得知神经网络模型究竟是如何完成训练的,比如使用一个预测准确率为 97% 的猫脸识别模型,有时会将小狗的脸部照片归纳到小猫中,而这种情况是无法解释的,因此神经网络算法又被人们形象地称之为“黑盒算法”。

image.png

图1:黑盒算法


由于神经网络算法的这一特性,导致一些场景并不适合使用神经网络算法,比如银行不会使用神经网络算法来评判用户的是否具备信用,因为一旦出现预测错误,银行根本无法溯源找到评判错误的原因,也就无法向客户做出合理的解释。


2) 数据量


在互联网并不发达的七八十年代,数据量不足是阻碍神经网络发展的一大因素。与传统的机器学习算法相比,要想训练一个优秀的神经网络模型,往往需要更多的数据(至少需要数千甚至数百万个标记样本)。


比如人脸识别,需要各种姿态样式的人脸,发怒的、喜悦的、悲伤的、戴眼镜的、模糊的等等,总之越多越好。海量数据集对于训练一个优秀的神经网络模型非常重要,神经网络获得数据越多,表现能力就越好,这样训练出来的模型才具有更好的泛化能力


注意:经过长达几十年的积累,直到目前,已经有大量的公开数据集可以使用,比如 Kaggle 数据集、Amazon 数据集、UCI 机器学习资源库、微软数据集等等。


3) 算力和开发成本高


在计算方面,比传统算法下相比,神经网络算法要耗费更多的计算机资源,对于复杂的深度学习模型来说,若想训练出一个优秀的模型,甚至需要几周的时间。但以 20 世纪七八十年代的计算机硬件水平,想要实现如此大规模的计算,几乎是不可能的。因此计算机的硬件性能也是影响神经网络发展的因素之一。


进入 21 世纪以后,计算机的硬件性能获得了飞速发展,这为神经网络的发展创造了有利的外部环境。


2017 年 5 月,围棋高手 AlphaGo 机器人,从空白状态学起,自我训练 3 天,对弈 490 万次,便打败了人类第一围棋高手柯洁。AlphaGo Zero 作为 AlphaGo 的进阶版,它自我训练 40 天,对弈 2900 万次,最终以 100:0 的战绩,打败了它的前辈 AlphaGo 机器人。而这些数据的背后,是强大算力作为支撑。


同时神经网络模型搭建过程较为复杂,激活函数的选择,权值的调节,都是一个比较费时的过程,因此其开发周期相对较长。总之,神经网络算法是一种成本较高的算法,这也决定了它能够解决比传统机器学习算法更为复杂的问题。下表对神经网络的特点做了简单的总结:

项目 说明
优点 网络结构延展性好,能够拟合复杂的数据分布,比如非线性函数,通过调节权值参数来获取泛化能力较强的模型。
缺点 可解释性差,调参依赖于经验,可能会陷入局部最优解,或者梯度消失、梯度爆炸等问题。
应用领域 神经网络算法拟合能力强,应用领域广,比如文本分类等,而深度学习作为神经网络的分支,也是当前最为热门研究方向,在图像处理、语言识别和自然语言处理等多个领域都有着非常突出的表现。

神经网络算法应用

讲了这么多有关神将网络的相关知识,一切的都是为了解决实际的问题,那应该如何在编程中使用它呢?Python 机器学习 Sklearn 库提供了多层感知器算法(Multilayer Perceptron,即 MLP) ,也就是我们所说的神经网络算法,它被封装在 sklearn.neural_network 包中,该包提供了三个神经网络算法 API,分别是:


  • neural_network.BernoulliRBM,伯努利受限玻尔兹曼机算法,无监督学习算法;
  • neural_network.MLPClassifier,神经网络分类算法,用于解决分类问题;
  • neural_network.MLPRgression,神经网络回归算法,用于解决回归问题。


下面使用神经网络分类算法解决鸢尾花的分类问题。在这之前有必要先了解 neural_network.MLPClassifier 分类器常用参数,如下所示:

名称 说明
hidden_layer_sizes 元组或列表参数,序列内元素的数量表示有多少个隐藏层,每个元素的数值表示该层有多少个神经元节点,比如(10,10),表示两个隐藏层,每层10个神经元节点。
activation 隐藏层激活函数,参数值有 identity、logistic、tanh、relu,默认为 'relu' 即线性整流函数(校正非线性)
solver 权重优化算法,lbfgs、sgd、adam,其中 lbfg 鲁棒性较好,但在大型模型或者大型数据集上花费的调优时间会较长,adam 大多数效果都不错,但对数据的缩放相当敏感,sgd 则不常用
alpha L2 正则项参数,比如 alpha = 0.0001(弱正则化)
learning_rate 学习率,参数值 constant、invscaling、adaptive
learning_rate_init 初始学习率,只有当 solver 为 sgd 或 adam 时才使用。
max_iter 最大迭代次数
shuffle 是否在每次迭代时对样本进行清洗,当 solver 参数值为 sgd 或 adam 时才使用该参数值
random_state 随机数种子
tol 优化算法中止的条件,当迭代先后的函数差值小于等于 tol 时就中止

Iris 鸢尾花数据集内包含 3 个类别,分别是山鸢花(Iris-setosa)、变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)共150 条记录,每一个类别有 50 条数据,每条记录有 4 项特征(单位为厘米):


  • sepallength:萼片长度
  • sepalwidth:萼片宽度
  • petallength:花瓣长度
  • petalwidth:花瓣宽度

我们选取两个类别(0 和 1,即山鸢尾花和变色鸢尾花)的样本标记值和两个特征属性('sepal length (cm)', 'petal length (cm)'),之后使用神经网络分类算法对数据集中的 0 和 1 两类鸢尾花进行正确分类。代码如下所示:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
def main():
iris = datasets.load_iris() # 加载鸢尾花数据集
# 用pandas处理数据集
data = pd.DataFrame(iris.data, columns=iris.feature_names)
print(iris.feature_names)
#数据集标记值 iris.target
data['class'] = iris.target
# 此处只取两类 0/1 两个类别的鸢尾花,设置类别不等于 2
data = data[data['class'] != 2]
# 对数据集进行归一化和标准化处理
scaler = StandardScaler()
# 选择两个特征值(属性)
X = data[['sepal length (cm)', 'petal length (cm)']]
#计算均值和标准差
scaler.fit(X)
# 标准化数据集(数据转化)
X = scaler.transform(X)
# 'class'为列标签,读取100个样本的的列表
Y = data[['class']]
# 划分数据集
X_train, X_test, Y_train, Y_test = train_test_split(X, Y)
# 创建神经网络分类器
mpl = MLPClassifier(solver='lbfgs', activation='logistic')
# 训练神经网络模型
mpl.fit(X_train, Y_train)
# 打印模型预测评分
print('Score:\n', mpl.score(X_test, Y_test))
# 划分网格区域
h = 0.02
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),np.arange(y_min, y_max, h))
Z = mpl.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
#画三维等高线图,并对轮廓线进行填充
plt.contourf(xx, yy, Z,cmap='summer')
# 绘制散点图
class1_x = X[Y['class'] == 0, 0]
class1_y = X[Y['class'] == 0, 1]
l1 = plt.scatter(class1_x, class1_y, color='b', label=iris.target_names[0])
class2_x = X[Y['class'] == 1, 0]
class2_y = X[Y['class'] == 1, 1]
l2 = plt.scatter(class2_x, class2_y, color='r', label=iris.target_names[1])
plt.legend(handles=[l1, l2], loc='best')
plt.grid(True)
plt.show()
main()

模型评分为 1.0,即模型预测正确率为 100%,输出效果图如下:

image.png

图2:分类效果图


以上就是神经网络算法的实际应用,可以看出神经网络虽然复杂,但训练出的模型预测正确率高,这是传统的机器学习算法所不能相比的。神经网络算法适合处理大规模的数据分析任务,不管是分类还是回归任务,都有着十分优秀的表现力。


目录
相关文章
|
6天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
115 55
|
16天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
97 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
10天前
|
Kubernetes 安全 Devops
有效抵御网络应用及API威胁,聊聊F5 BIG-IP Next Web应用防火墙
有效抵御网络应用及API威胁,聊聊F5 BIG-IP Next Web应用防火墙
36 10
有效抵御网络应用及API威胁,聊聊F5 BIG-IP Next Web应用防火墙
|
15天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
101 30
|
2天前
|
JSON 算法 Java
Nettyの网络聊天室&扩展序列化算法
通过本文的介绍,我们详细讲解了如何使用Netty构建一个简单的网络聊天室,并扩展序列化算法以提高数据传输效率。Netty的高性能和灵活性使其成为实现各种网络应用的理想选择。希望本文能帮助您更好地理解和使用Netty进行网络编程。
21 12
|
22天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
9天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
12天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
17天前
|
存储 安全 网络安全
网络安全的盾与剑:漏洞防御与加密技术的实战应用
在数字化浪潮中,网络安全成为保护信息资产的重中之重。本文将深入探讨网络安全的两个关键领域——安全漏洞的防御策略和加密技术的应用,通过具体案例分析常见的安全威胁,并提供实用的防护措施。同时,我们将展示如何利用Python编程语言实现简单的加密算法,增强读者的安全意识和技术能力。文章旨在为非专业读者提供一扇了解网络安全复杂世界的窗口,以及为专业人士提供可立即投入使用的技术参考。
|
19天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。

热门文章

最新文章

下一篇
DataWorks