【深度挖掘Java性能调优】「底层技术原理体系」深入探索Java服务器性能监控Metrics框架的实现原理分析(Gauge和Histogram篇)

简介: 【深度挖掘Java性能调优】「底层技术原理体系」深入探索Java服务器性能监控Metrics框架的实现原理分析(Gauge和Histogram篇)

承接上文

承接上文中的【深度挖掘Java性能调优】「底层技术原理体系」深入探索Java服务器性能监控Metrics框架的实现原理分析(Counter篇),我们知道和了解了对应的Counter计数器的作用和实现原理,接下来我们需要进行分析和了解计量器(Gauge)和直方图(Histogram)

计量器(Gauge)

计量器(Gauge)是度量和收集指标数据的重要工具之一,是一种用于表示任意可变值的指标。它可以是数字、字符串或其他类型的数据。通过调用已注册的回调方法或读取已注册的变量,计量器能够获取当前值。计量器适用于需要动态监测具体数值或状态的指标,例如,内存使用情况、CPU使用情况等。

使用计量器可以帮助开发人员监测和优化应用程序的性能和资源消耗。通过监测指标的变化,可以及时做出调整和改进,提高应用程序的效率和稳定性。

与Counter一样,计量器也是一个数字类型的指标,但和计数器不同的是,它主要用于收集指标的瞬时值,因此它是可变的。它的常用用法如下所示:

  • 使用Gauge进行记录以统计API的响应时间,因为响应时间是可变的,可能会有高低波动。
  • 统计CPU的负载,可以了解系统的负荷情况。
  • 统计CPU的核心线程数和运行线程数,以了解系统中正在运行的线程数量。
  • 统计操作系统的文件句柄数,以监控文件资源的使用情况。

与Counter的对比分析

相对于Counter来说,因为Gauge记录的只是一个瞬时值,因此也不用考虑多线程下的竞争与冲突问题。下面是一个简单的案例代码:

java

复制代码

private final static class SimpleGauge {
        private volatile double value;
        private SimpleGauge(double value) {
            this.value = value;
        }
        public Double getValue() {
            return this.value;
        }
        public void setValue(double value) {
            this.value = value;
        }
}

直方图(Histogram)

当我们不仅仅关注计数(Counter),或者是瞬时变量(Gauge),而是需要知道最大值,最小值,中位数,平均值以及第99%的值时,我们就需要用到直方图(Histogram)这个统计类型了。

主要作用

Histogram主要的用途是表示分布情况,直方图用于测量和统计数据分布的情况。它会记录值的分布和频率,并提供一些统计计算,如最大值、最小值、平均值、标准差等。直方图适合用于衡量数据集的中心趋势和离散程度,比如响应时间的分布。

数据统计难点分析

为了准确统计一个API的99%响应时间,我们不能简单地记录所有响应时间并进行排序。由于API在不断被调用,新的响应时间会不断产生,因此这个方法无法得到准确的99%响应时间。

源码原理分析

为了解决这个问题,可以使用Reservoir类来收集响应时间等数据。Reservoir实质上是一个数据池,用于保存数据,在进行统计时,可以获取快照 (Snapshot) 来获取统计数据。

Reservoir类

Reservoir类是在codehale库中被使用的,这个类基于蓄水池抽样算法,它可以在固定的容量下持续保留最近的数据样本。每当有新的响应时间数据到来时,Reservoir会根据一定的概率选择保留该数据样本,以保持总体的分布情况。在需要进行统计时,可以基于Reservoir的快照来获取相应的统计数据,例如获取平均响应时间、99%响应时间等。

使用Reservoir类能够实现高效地统计数据,而不需要记录和排序所有数据,同时能够保持近似的分布情况,为后续的数据分析提供准确可靠的结果。

了解了基本原理之后,我们来看一下histogram的源码。

java

复制代码

public class Histogram implements Metric, Sampling, Counting {
    private final Reservoir reservoir;
    private final LongAdder count;
    public Histogram(Reservoir reservoir) {
        this.reservoir = reservoir;
        this.count = new LongAdder();
    }
    //向histogram中增加新的数据,实际上就是向数据池中添加数据
    public void update(int value) {
        update((long) value);
    }
    public void update(long value) {
        count.increment();
        reservoir.update(value);
    }
    @Override
    public long getCount() {
        return count.sum();
    }
    //获取Snapshot,实际上也是通过数据池来获取
    @Override
    public Snapshot getSnapshot() {
        return reservoir.getSnapshot();
    }
}

再来看看Snapshot的代码。

java

复制代码

public class Snapshot {
    //最核心的方法,用于获取第n%的值
    public double getValue(double quantile);
    private final long[] values;
    public double getMedian() {
        return getValue(0.5);
    }
    public double get75thPercentile() {
        return getValue(0.75);
    }
    /*
        省略部分getNthPercentile函数
    */
    public long getMax();
    public double getMean();
    public long getMin();
    /*
    ...
    */ 
}

从Snapshot中,我们就基本能够得到我们想要的统计数据了。

来简单地了解一下数据池。定义了数据池以后,我们就需要考虑更多的问题了,比如说,如何保证可以高性能地将数据写入数据池中,以及如何保证数据池中数据量不会过大而占用过多的内存,以及如何快速地取出快照。在Codahale metrics里面,主要定义了三种数据池。

UniformReservoir 默认保存1028条记录,每次进行update操作的时候,首先会依次地将值填入1028条记录中,当记录满了之后,就会使用随机替换0 - 1027中的一条。因为是随机替换,所以也不需要进行加锁和解锁。

markdown

复制代码

- SlidingWindowReservoir **固定大小的数据池**,从0到n-1填入数据,不断循环。也不会进行加锁和解锁。
- SlidingTimeWindowReservoir **非固定大小的数据池**,但是只会存储过去N秒的数据。使用ConcurrentSkipListMap进行存储。
- ExponentiallyDecayingReservoir **固定大小的数据池**。首先会逐个数据填满数据池,随后会将老的数据替换为新的数据,使用ConcurrentSkipListMap进行存储。可以说是SlidingWindowReservoir与SlidingTimeWindowReservoir的结合。

当然还有其他的有效的方法是使用基于概率算法的数据结构,例如,特定数据结构,如TDigest算法,来实时估计99%的响应时间。这些方法基于近似统计的原理,通过维护一个固定容量的滑动窗口或一个特定的数据结构来跟踪最近一段时间的响应时间分布。


总结概括

以上介绍的计数器、量规和直方图是监控数据中常用且基础的数据类型。它们提供了一些基本的功能和计算,让我们能够更好地理解和监控应用程序的关键指标和数据。

在使用 Java 监控库时,我们可以依据具体需求使用这些数据类型,并利用其提供的方法和功能来收集、记录和分析监控数据。这些数据类型的使用有助于帮助我们了解应用程序的状态、性能和行为,进而进行优化和改进。

服务器性能监控的要点和讨论

  1. 我们需要收集的是瞬时值、计数还是统计分布值?
  2. 在进行数据记录时,如何保证高性能的写入/更新?(尽可能减少锁的使用)同时如何确保数据的更新是合理的?
  3. 如何将指标数据汇总到一个地方以便于后续处理?
相关文章
|
4天前
|
JSON Java Apache
非常实用的Http应用框架,杜绝Java Http 接口对接繁琐编程
UniHttp 是一个声明式的 HTTP 接口对接框架,帮助开发者快速对接第三方 HTTP 接口。通过 @HttpApi 注解定义接口,使用 @GetHttpInterface 和 @PostHttpInterface 等注解配置请求方法和参数。支持自定义代理逻辑、全局请求参数、错误处理和连接池配置,提高代码的内聚性和可读性。
|
13天前
|
人工智能 前端开发 Java
基于开源框架Spring AI Alibaba快速构建Java应用
本文旨在帮助开发者快速掌握并应用 Spring AI Alibaba,提升基于 Java 的大模型应用开发效率和安全性。
基于开源框架Spring AI Alibaba快速构建Java应用
|
13天前
|
消息中间件 Java 数据库连接
Java 反射最全详解 ,框架设计必掌握!
本文详细解析Java反射机制,包括反射的概念、用途、实现原理及应用场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
Java 反射最全详解 ,框架设计必掌握!
|
8天前
|
存储 Java 开发者
Java中的集合框架深入解析
【10月更文挑战第32天】本文旨在为读者揭开Java集合框架的神秘面纱,通过深入浅出的方式介绍其内部结构与运作机制。我们将从集合框架的设计哲学出发,探讨其如何影响我们的编程实践,并配以代码示例,展示如何在真实场景中应用这些知识。无论你是Java新手还是资深开发者,这篇文章都将为你提供新的视角和实用技巧。
10 0
|
6天前
|
安全 Java 测试技术
Java并行流陷阱:为什么指定线程池可能是个坏主意
本文探讨了Java并行流的使用陷阱,尤其是指定线程池的问题。文章分析了并行流的设计思想,指出了指定线程池的弊端,并提供了使用CompletableFuture等替代方案。同时,介绍了Parallel Collector库在处理阻塞任务时的优势和特点。
|
15天前
|
安全 Java
java 中 i++ 到底是否线程安全?
本文通过实例探讨了 `i++` 在多线程环境下的线程安全性问题。首先,使用 100 个线程分别执行 10000 次 `i++` 操作,发现最终结果小于预期的 1000000,证明 `i++` 是线程不安全的。接着,介绍了两种解决方法:使用 `synchronized` 关键字加锁和使用 `AtomicInteger` 类。其中,`AtomicInteger` 通过 `CAS` 操作实现了高效的线程安全。最后,通过分析字节码和源码,解释了 `i++` 为何线程不安全以及 `AtomicInteger` 如何保证线程安全。
java 中 i++ 到底是否线程安全?
|
2天前
|
安全 Java 开发者
深入解读JAVA多线程:wait()、notify()、notifyAll()的奥秘
在Java多线程编程中,`wait()`、`notify()`和`notifyAll()`方法是实现线程间通信和同步的关键机制。这些方法定义在`java.lang.Object`类中,每个Java对象都可以作为线程间通信的媒介。本文将详细解析这三个方法的使用方法和最佳实践,帮助开发者更高效地进行多线程编程。 示例代码展示了如何在同步方法中使用这些方法,确保线程安全和高效的通信。
15 9
|
5天前
|
存储 安全 Java
Java多线程编程的艺术:从基础到实践####
本文深入探讨了Java多线程编程的核心概念、应用场景及其实现方式,旨在帮助开发者理解并掌握多线程编程的基本技能。文章首先概述了多线程的重要性和常见挑战,随后详细介绍了Java中创建和管理线程的两种主要方式:继承Thread类与实现Runnable接口。通过实例代码,本文展示了如何正确启动、运行及同步线程,以及如何处理线程间的通信与协作问题。最后,文章总结了多线程编程的最佳实践,为读者在实际项目中应用多线程技术提供了宝贵的参考。 ####
|
2天前
|
监控 安全 Java
Java中的多线程编程:从入门到实践####
本文将深入浅出地探讨Java多线程编程的核心概念、应用场景及实践技巧。不同于传统的摘要形式,本文将以一个简短的代码示例作为开篇,直接展示多线程的魅力,随后再详细解析其背后的原理与实现方式,旨在帮助读者快速理解并掌握Java多线程编程的基本技能。 ```java // 简单的多线程示例:创建两个线程,分别打印不同的消息 public class SimpleMultithreading { public static void main(String[] args) { Thread thread1 = new Thread(() -> System.out.prin
|
5天前
|
Java
JAVA多线程通信:为何wait()与notify()如此重要?
在Java多线程编程中,`wait()` 和 `notify()/notifyAll()` 方法是实现线程间通信的核心机制。它们通过基于锁的方式,使线程在条件不满足时进入休眠状态,并在条件满足时被唤醒,从而确保数据一致性和同步。相比其他通信方式,如忙等待,这些方法更高效灵活。 示例代码展示了如何在生产者-消费者模型中使用这些方法实现线程间的协调和同步。
14 3