【深度挖掘Java性能调优】「底层技术原理体系」深入探索Java服务器性能监控Metrics框架的实现原理分析(Counter篇)

简介: 【深度挖掘Java性能调优】「底层技术原理体系」深入探索Java服务器性能监控Metrics框架的实现原理分析(Counter篇)

前提概要

对于后台服务而言,除了保证每个功能的正常工作,我们还需要了解服务的运行情况,包括机器的物理性能(例如线程数、文件句柄数、内存占用大小、GC时间等)以及业务性能(例如关键流程通过率、QPS以及响应时间等)。目前,常用的做法是通过定义、收集和展示一系列指标(metrics)来完成对后台服务的监控。

监控工作可以分为四个部分

根据以下这四个部分,我们能够完成对后台服务的监控工作,从而能够及时了解和处理服务的运行情况,优化性能,提供更好的用户体验,并确保服务的可靠性和稳定性。

  • 定义监控数据的产生:我们需要明确定义要监控的数据,包括哪些指标和数据需要收集和监控,以满足监控需求。这可以包括硬件资源利用率、服务的核心性能指标、业务处理的成功率等。
  • 定义监控数据收集的规则:我们需要定义如何收集和存储监控数据。这可能涉及到在代码中嵌入采集指标的逻辑,使用监控代理或导入外部监控系统等方式。关键是确定监控数据的数据源,以及数据如何采集、存储和处理。
  • 数据监控数据的展现形式:需要将收集到的监控数据进行可视化展示,以便更好地理解和分析。这可以包括创建仪表盘、图表、报表或使用专业的监控系统来呈现监控数据,让监控数据更易于理解和分析。
  • 根据监控数据进行报警:根据监控数据设置报警规则,以便在出现异常情况时及时提醒相关人员。这可以通过阈值设置、异常模式识别或使用专业的报警系统来实现。及时的报警能够帮助快速响应和解决问题,确保服务的稳定性和可靠性。

监控开发任务

接下来将逐步介绍如何在Java服务中接入监控服务,我们将从监控数据的产生开始。在本文中,我们将主要基于当前流行的度量框架 codahale.metrics 来进行介绍。

通过引入此依赖项,您可以使用 codahale.metrics 框架中提供的各种功能和特性进行应用程序的度量和监控。

xml

复制代码

<dependencies>
    <dependency>
        <groupId>com.codahale.metrics</groupId>
        <artifactId>metrics-core</artifactId>
        <version>x.y.z</version>
    </dependency>
</dependencies>

在接下来我们将指导您如何使用 codahale.metrics 库来定义和收集监控数据,展示和分析指标,并根据数据设置报警规则等。codahale.metrics 提供了丰富的功能和灵活的API,可以轻松地与您的Java服务集成,帮助您监控和优化服务的性能、可靠性和稳定性。

Metrics中的基础数据类型

在谈论监控数据的产生时,我们首先需要了解监控库中最常用的三种数据类型,它们分别是:计数器(Counter)、量规(Gauge)和直方图(Histogram)。几乎所有的 Java 监控库都包含了这三种数据类型的实现。

计数器(Counter)

计数器用于记录一个累加值,它表示一个增加或减少的计数。可以通过 inc() 方法增加计数器的值,也可以通过 dec() 方法减少计数器的值。计数器可以用于统计请求次数、错误次数等离散的事件计数。

列举的三种需求场景,可以使用 com.codahale.metrics(或其他类似的监控库)中的不同数据类型来实现。

统计 API 访问中异常(1000/1500)的次数

使用计数器(Counter)来实现。在每次 API 请求中,当发生异常(如 400 或 500 错误)时,通过 inc() 方法将计数器值增加1。

java

复制代码

Counter apiErrorCounter = metricRegistry.counter("api.error.counter");
// 在 API 请求处理中,当发生异常时,调用以下代码
apiErrorCounter.inc();

统计 API 的调用量

使用计数器(Counter)来实现。在每次 API 请求时,通过 inc() 方法增加计数器的值。

java

复制代码

Counter apiCallCounter = metricRegistry.counter("api.call.counter");
// 在每个 API 请求处理中,调用以下代码
apiCallCounter.inc();

统计特定事件发生的次数

使用计数器(Counter)来记录特定事件发生的次数。在事件发生时,通过 inc() 方法将计数器值增加1。

java

复制代码

Counter eventCounter = metricRegistry.counter("event.counter");
// 在特定事件发生时,调用以下代码
eventCounter.inc();

以上示例展示了如何使用计数器来统计异常次数、API 调用量和特定事件发生的次数。可以根据具体需求给计数器命名并使用相应的记录代码。通过监控库提供的方法,可以简单快速地进行数据统计和监控,从而更好地了解和管理应用程序的行为。

Counter的底层原理

Counter 的底层实现主要通过(基础 (Base) 计数器)和(单元 (Cell) 数组)来保证自增的原子性和性能。

com.codahale.metrics.Counter 的源码中,每个 Counter 对象由两部分组成,这是一种称为 "Striped64" 的机制,它是针对高并发情况下的性能优化。

基础 (Base) 计数器

Base 计数器是一个 volatile long 类型的字段,用于存储计数器的初始值及其当前值。它用于低并发情况下对计数进行快速的自增和获取操作。

单元 (Cell) 数组

Cellvolatile long 类型的数组,每个单元内部维护一个计数器的增量值。为了处理高并发情况下的并发访问,Cell 数组采用了分段锁(CAS 操作)的方式,将计数器的自增操作分散到多个单元上。每个线程独占一个单元,当多个线程访问不同的单元时,它们之间不会发生竞争,可以保证并发访问时的性能。

简单的源码案例

通过这些策略和机制的组合,Counter 在具有竞争的情况下保持了较高的性能,同时也考虑了内存消耗的控制,使得其在高并发场景下能够有效地进行计数操作。

java

复制代码

public class Counter {
  transient volatile int busy;
  transient volatile long base;
  transient volatile Cell[] cells;
  public void inc(long n) {
    long b;
    if(cells == null || !casBase(b=base, b+n)) {
      //使用cells进行计算
    }
  }
  public long sum() {
    long sum = base;
    Cell[] as = cells;
    if (as != null) {
      int n = as.length;
    for (int i = 0; i < n; ++i) {
      Cell a = as[i];
      if (a != null)
        sum += a.value;
    }
  } 
    return sum;
  }
}

基本的执行流程图:

Counter分析总结

Counter 的底层实现使用了基础(Base)和单元(Cell)来存储计数值。在高并发情况下,线程会针对不同的 Cell 进行自增操作,从而避免了竞争,减少了资源争用。而在低并发情况下,通过直接对 Base 进行自增操作,避免了锁的开销,提高了性能,也保证了 Counter 的高性能和并发性能。 这种基于 BaseCell 的实现方式能够平衡高并发和低并发情况下的性能需求,确保了 Counter 的自增操作的原子性和并发性能。

从CPU和内存角度去分析资源开销

对于有竞争的情况,Counter 使用自旋锁来进行同步,这意味着线程会在一个忙等待的循环中等待竞争解决。这种自旋锁的方式避免了线程上下文切换的开销,并且消耗的 CPU 时间较少,从而提高了性能。

为了避免过多使用内存,当单元数组的数量超过 CPU 核心数时,Counter 将不再扩展单元数组的大小,而是保持不变。这样可以避免过多的内存消耗,并具有更好的性能。

目录
打赏
0
0
0
0
379
分享
相关文章
单位网络监控软件:Java 技术驱动的高效网络监管体系构建
在数字化办公时代,构建基于Java技术的单位网络监控软件至关重要。该软件能精准监管单位网络活动,保障信息安全,提升工作效率。通过网络流量监测、访问控制及连接状态监控等模块,实现高效网络监管,确保网络稳定、安全、高效运行。
99 11
Java注解的底层源码剖析与技术认识
Java注解(Annotation)是Java 5引入的一种新特性,它提供了一种在代码中添加元数据(Metadata)的方式。注解本身并不是代码的一部分,它们不会直接影响代码的执行,但可以在编译、类加载和运行时被读取和处理。注解为开发者提供了一种以非侵入性的方式为代码提供额外信息的手段,这些信息可以用于生成文档、编译时检查、运行时处理等。
105 7
智慧产科一体化管理平台源码,基于Java,Vue,ElementUI技术开发,二开快捷
智慧产科一体化管理平台覆盖从备孕到产后42天的全流程管理,构建科室协同、医患沟通及智能设备互联平台。通过移动端扫码建卡、自助报道、智能采集数据等手段优化就诊流程,提升孕妇就诊体验,并实现高危孕产妇五色管理和孕妇学校三位一体化管理,全面提升妇幼健康宣教质量。
57 12
SaaS云计算技术的智慧工地源码,基于Java+Spring Cloud框架开发
智慧工地源码基于微服务+Java+Spring Cloud +UniApp +MySql架构,利用传感器、监控摄像头、AI、大数据等技术,实现施工现场的实时监测、数据分析与智能决策。平台涵盖人员、车辆、视频监控、施工质量、设备、环境和能耗管理七大维度,提供可视化管理、智能化报警、移动智能办公及分布计算存储等功能,全面提升工地的安全性、效率和质量。
CRaC技术助力ACS上的Java应用启动加速
容器计算服务借助ACS的柔性算力特性并搭配CRaC技术极致地提升Java类应用的启动速度。
Java最新图形化界面开发技术——JavaFx教程(含UI控件用法介绍、属性绑定、事件监听、FXML)
JavaFX是Java的下一代图形用户界面工具包。JavaFX是一组图形和媒体API,我们可以用它们来创建和部署富客户端应用程序。 JavaFX允许开发人员快速构建丰富的跨平台应用程序,允许开发人员在单个编程接口中组合图形,动画和UI控件。本文详细介绍了JavaFx的常见用法,相信读完本教程你一定有所收获!
2989 2
Java最新图形化界面开发技术——JavaFx教程(含UI控件用法介绍、属性绑定、事件监听、FXML)
建筑施工一体化信息管理平台源码,支持微服务架构,采用Java、Spring Cloud、Vue等技术开发。
智慧工地云平台是专为建筑施工领域打造的一体化信息管理平台,利用大数据、云计算、物联网等技术,实现施工区域各系统数据汇总与可视化管理。平台涵盖人员、设备、物料、环境等关键因素的实时监控与数据分析,提供远程指挥、决策支持等功能,提升工作效率,促进产业信息化发展。系统由PC端、APP移动端及项目、监管、数据屏三大平台组成,支持微服务架构,采用Java、Spring Cloud、Vue等技术开发。
126 7
java版药品不良反应智能监测系统源码,采用SpringBoot、Vue、MySQL技术开发
基于B/S架构,采用Java、SpringBoot、Vue、MySQL等技术自主研发的ADR智能监测系统,适用于三甲医院,支持二次开发。该系统能自动监测全院患者药物不良反应,通过移动端和PC端实时反馈,提升用药安全。系统涵盖规则管理、监测报告、系统管理三大模块,确保精准、高效地处理ADR事件。
212 1
【技术开发】接口管理平台要用什么技术栈?推荐:Java+Vue3+Docker+MySQL
该文档介绍了基于Java后端和Vue3前端构建的管理系统的技术栈及功能模块,涵盖管理后台的访问、登录、首页概览、API接口管理、接口权限设置、接口监控、计费管理、账号管理、应用管理、数据库配置、站点配置及管理员个人设置等内容,并提供了访问地址及操作指南。
java-ajax技术详解!!!
本文介绍了Ajax技术及其工作原理,包括其核心XMLHttpRequest对象的属性和方法。Ajax通过异步通信技术,实现在不重新加载整个页面的情况下更新部分网页内容。文章还详细描述了使用原生JavaScript实现Ajax的基本步骤,以及利用jQuery简化Ajax操作的方法。最后,介绍了JSON作为轻量级数据交换格式在Ajax应用中的使用,包括Java中JSON与对象的相互转换。
95 1

热门文章

最新文章