【人工智能技术专题】「入门到精通系列教程」打好AI基础带你进军人工智能领域的全流程技术体系(机器学习知识导论)(二)

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
简介: 【人工智能技术专题】「入门到精通系列教程」打好AI基础带你进军人工智能领域的全流程技术体系(机器学习知识导论)

【人工智能技术专题】「入门到精通系列教程」打好AI基础带你进军人工智能领域的全流程技术体系(机器学习知识导论)(一)https://developer.aliyun.com/article/1471027


算法

算法是指学习模型的计算方法,而统计学习则是根据训练数据集,在假设空间中选择最优模型的学习策略。为了得到最优模型,通常需要运用最优化的方法求解。

机器学习算法核心的大体方向是一下这几种算法根基:分类、聚类、异常检查以及回归等。


分类算法

分类是一种机器学习模型训练方式,它的训练集和测试集都是标记好的,通过学习并识别数据的相关特征,建立模型对新的未知数据进行分类和预测。



聚类算法

聚类是一种机器学习方法,它可以从海量数据集中识别数据的相似性和差异性,将相似的数据分组聚合为多个类别。通过聚类,我们可以更好地理解数据之间的联系,从而作出更有意义的决策。



异常检测

异常检测是一种数据分析技术,它可以帮助我们识别与正常数据分布规律不同的离群点。通过对数据点进行分布规律分析,异常检测可以帮助我们找到那些与其他数据点异于寻常的数据点,以避免数据误解和错误决策。



回归

回归是一种机器学习算法,它可以根据对已知属性值数据的训练,为模型寻找最佳拟合参数,并用于预测新样本的输出值。通过回归,我们可以构建一个数学模型来描述输入特征和输出变量之间的关系,以预测新的输出值。这种技术可以应用于各种场景,例如股票市场预测,房价预测等。



机器学习的技术分类

机器学习技术可分为三类:监督学习、无监督学习和强化学习,这三类技术是机器学习领域中应用最为广泛的技术,也是现代工业界中普遍采用的技术。



之前在前面的文章介绍了对应的学习概念和算法,那么接下来我就再次巩固和回顾复习一下下面之前的机器学习方向类型。

针对于机器学习技术方向的监督学习、无监督学习和强化学习的各种详细分析和原理详细探究会在“【人工智能技术专题】「入门到精通系列教程」打好AI基础带你进军人工智能领域的全流程技术体系(机器学习算法概论)”进行分析和说明。

监督学习(Supervised Learning)

监督学习(Supervised Learning)是一种机器学习的方法,它必须要确定目标变量的值,以便机器学习算法可以发现特征和目标变量之间的关系

有标签数据的学习方法,是通过已有的标注数据训练模型,再应用此模型对未知数据进行分类、预测等任务,监督学习算法用于根据已知的输入和输出数据创建模型以进行未来预测。

核心原理

监督学习(Supervised Learning)包括分类和回归两种学习方式,它的训练集具有标记信息。

  • 分类算法:我们将数据分为多个离散类别,通过学习已经确定好的类别(即标签),来预测新的未知数据所属的类别。
  • 回归算法:我们处理的是连续型数据,它的目标变量是一系列连续值。在回归中,我们基于已知的数据和输出变量之间的关系,建立一个模型,以预测新的未知数据的输出结果。真实的输出结果可以是任何连续值,如价格、温度等。

分类算法逻辑案例简介

样本集:训练数据+测试数据

  • 训练样本 = 特征(feature)+目标变量(label:分类-离散值/回归-连续值)
  • 特征:独立测量得到的训练样本集的列
  • 目标变量:机器学习预测算法的测试结果
  • 目标变量:分类问题中的离散值,也可以是回归问题中的连续值。

在分类算法中,目标变量通常是标称型,例如真与假;而在回归算法中,目标变量通常是连续型,例如1~100。

知识数据信息

一般情况下,在分类算法中,可以采用以下几种形式确定一个实例所属的类别:

  1. 采用规则集的形式确定类别,例如:数学成绩大于90分为优秀;
  2. 采用概率分布的形式确定类别,例如:通过统计分布发现,90%的同学数学成绩在70分以下,那么大于70分定为优秀;
  3. 使用训练样本集中的一个实例确定类别,例如:通过样本集合,我们训练出一个模型实例,得出年轻、数学成绩中高、谈吐优雅等特征时,我们认为是优秀。

无监督学习(Unsupervised Learning)

无监督学习(Unsupervised Learning)包括聚类和降维两种方式,其训练集没有标记信息

从未标注的数据中,通过统计学方法挖掘数据潜在的结构和规律,完成聚类、降维等任务,无监督学习检测输入数据中的隐藏模式以进行预测。

无监督学习的应用包括以下几个方面:

  • 聚类:无监督学习可以将数据分成多个类别,使得每个类别内部的数据相似度较高,而不同类别之间的数据差异较大;
  • 密度估计:无监督学习可以通过训练样本来确定变量的概率分布,以此得出数据的统计特征;
  • 降维:无监督学习可以通过减少数据的维度,使得数据的特征更加容易被观察和理解,通常可以使用二维或三维图形来展示数据信息。


强化学习(Reinforcement Learning)

强化学习(Reinforcement Learning):通过稀疏和延迟的反馈标签来进行学习

根据环境的响应及其反馈,动态调整策略,不断优化学习过程,从而达到最优化目标的一种学习方式。

强化学习能够使用来自其自身行为和经验的反馈,通过反复试验在交互式环境中学习。

常见机器学习算法

针对于机器学习算法的各种详细分析和原理详细探究会在“【人工智能技术专题】「入门到精通系列教程」打好AI基础带你进军人工智能领域的全流程技术体系(机器学习算法概论)”进行分析和说明。

目前的人工智能领域,有多种流行的机器学习算法,其中包括:



  • 神经网络(Neural networks):神经网络模拟人脑的工作方式,适用于自然语言翻译、图像识别、语音识别和图像创建等应用;
  • 线性回归(Logistic regression):用于基于不同值之间的线性关系进行数值预测,例如可以用于预测房价;
  • 逻辑回归(Clustering):用于分类反应变量的预测,例如答案为“是/否”的问题,适用于垃圾邮件分类和生产线上的质量控制等应用;
  • 聚类(Cluserting):采用无监督学习,可以识别数据中的模式并进行分组;
  • 决策树(Decision tress):用于预测数值或将数据分类,具有易于验证和审计的优点;
  • 随机森林(Random forests):采用多个决策树结果的组合来预测值或类别。

机器学习的实际应用

机器学习应用广泛,以下是一些最常见的应用场景:



  • 图像识别:机器学习可以用于识别图像和视频中的物体、人像、地点等;
  • 语音识别:机器学习可以将语音转换为文本,反之亦然;
  • 自然语言处理:机器学习可以用于理解和解释人类语言;
  • 推荐系统:机器学习可以根据用户过去的行为向用户推荐产品或服务;
  • 异常检测:机器学习可以用于检测数据中的异常模式或行为;
  • 欺诈检测:机器学习可以用于检测金融交易中的欺诈活动;
  • 预测性维护:机器学习可以用于预测机器或设备何时可能发生故障;
  • 机器人:机器学习可以用于教机器人执行任务;
  • 自动驾驶汽车:机器学习可以用于使汽车能够自动驾驶,例如Google的Naymo、Tesla的FSD以及百度的Apollo自动驾驶系统。

内容总结

机器学习概念定义

机器学习是模拟人类学习行为的计算机科学领域,旨在通过赋予机器获取新知识和技能的能力,实现人工智能系统的智能化。机器学习利用先进算法进行深层次的统计分析和计算,实现自主学习和智能化决策。它能够识别、分类、预测等各类任务,并从现实世界中学习模式和规律。

机器学习的技术分类

机器学习技术可以主要分为三类:监督学习、无监督学习和强化学习。这三种技术在机器学习领域中应用广泛,也在现代工业界中被广泛采用。

数据

数据驱动是人工智能(AI)中的一种方法,通过对大量数据的处理、分析和整理等操作,利用数据模型和算法来实现智能应用。

模型

模型是指为了基于数据X做出决策Y而提出的假设函数。模型可以有不同的形态,常见的有计算型和规则型。

算法

算法是学习模型的计算方法,而统计学习是选择最优模型的学习策略。为了得到最优模型,需要使用最优化方法进行求解。

常见机器学习算法

以下是机器学习中常见的几种算法:

  • 神经网络(Neural networks):模拟人脑的工作方式,适用于自然语言处理、图像和语音识别等应用;
  • 线性回归(Logistic regression):基于不同值之间的线性关系进行数值预测,例如可以用于预测房价;
  • 逻辑回归(Clustering):用于分类反应变量的预测,例如答案为“是/否”的问题,适用于垃圾邮件分类和生产线上的质量控制等应用;
  • 聚类(Clustering):采用无监督学习,能够识别数据中的模式并进行分组;
  • 决策树(Decision trees):用于预测数值和分类,具有易于验证和审计的优点;
  • 随机森林(Random forests):采用多个决策树结果的组合来预测值或类别。

机器学习的实际应用

机器学习可以应用于图像识别、语音识别、自然语言处理、推荐系统、异常检测、欺诈检测、预测性维护、机器人和自动驾驶汽车等领域,从而实现诸如检测异常、预测机器故障和自动驾驶等多种人工智能应用。

相关文章
|
3天前
|
机器学习/深度学习 人工智能 供应链
AI技术在医疗领域的应用与未来展望###
本文深入探讨了人工智能(AI)技术在医疗领域的多种应用及其带来的革命性变化,从疾病诊断、治疗方案优化到患者管理等方面进行了详细阐述。通过具体案例和数据分析,展示了AI如何提高医疗服务效率、降低成本并改善患者体验。同时,文章也讨论了AI技术在医疗领域面临的挑战和未来发展趋势,为行业从业者和研究人员提供参考。 ###
|
3天前
|
机器学习/深度学习 人工智能 搜索推荐
人工智能与未来医疗:AI技术如何重塑医疗健康领域###
【10月更文挑战第21天】 一场由AI驱动的医疗革命正在悄然发生,它以前所未有的速度和深度改变着我们对于疾病预防、诊断、治疗及健康管理的认知。本文探讨了AI在医疗领域的多维度应用,包括精准医疗、药物研发加速、远程医疗普及以及患者个性化治疗体验的提升,揭示了这场技术变革背后的深远意义与挑战。 ###
19 6
|
3天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗领域的应用与挑战
【10月更文挑战第21天】 本文探讨了人工智能(AI)在医疗领域的多种应用,包括疾病诊断、治疗方案推荐、药物研发和患者管理等。通过分析这些应用案例,我们可以看到AI技术如何提高医疗服务的效率和准确性。然而,AI在医疗领域的广泛应用也面临诸多挑战,如数据隐私保护、算法透明度和伦理问题。本文旨在为读者提供一个全面的视角,了解AI技术在医疗领域的潜力和面临的困难。
|
4天前
|
人工智能 自然语言处理 监控
AI技术在文本情感分析中的应用
【10月更文挑战第22天】本文将探讨人工智能(AI)如何改变我们对文本情感分析的理解和应用。我们将通过实际的代码示例,深入了解AI如何帮助我们识别和理解文本中的情感。无论你是AI新手还是有经验的开发者,这篇文章都将为你提供有价值的信息。让我们一起探索AI的奇妙世界吧!
12 3
|
2天前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
9 1
|
4天前
|
人工智能 边缘计算 监控
边缘AI计算技术应用-实训解决方案
《边缘AI计算技术应用-实训解决方案》提供完整的实训体系,面向高校和科研机构的AI人才培养需求。方案包括云原生AI平台、百度AIBOX边缘计算硬件,以及8门计算机视觉实训课程与2门大模型课程。AI平台支持大规模分布式训练、超参数搜索、标注及自动化数据管理等功能,显著提升AI训练与推理效率。硬件涵盖多规格AIBOX服务器,支持多种推理算法及灵活部署。课程涵盖从计算机视觉基础到大模型微调的完整路径,通过真实商业项目实操,帮助学员掌握前沿AI技术和产业应用。
18 2
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术前沿探索:解锁智能时代的无限可能
【10月更文挑战第22天】AI技术前沿探索:解锁智能时代的无限可能
11 1
|
3天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在医疗健康领域的应用与前景
随着科技的不断进步,人工智能(AI)技术已经深入到我们生活的方方面面,特别是在医疗健康领域。本文将探讨AI在医疗健康领域的应用现状、面临的挑战以及未来的发展前景。
|
2天前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,企业越来越关注大模型的私有化部署。本文详细探讨了硬件资源需求、数据隐私保护、模型可解释性、模型更新和维护等方面的挑战及解决方案,并提供了示例代码,帮助企业高效、安全地实现大模型的内部部署。
9 1
|
2天前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,大模型在各领域的应用日益广泛。然而,将其私有化部署到企业内部面临诸多挑战,如硬件资源需求高、数据隐私保护、模型可解释性差、更新维护成本高等。本文探讨了这些挑战,并提出了优化硬件配置、数据加密、可视化工具、自动化更新机制等解决方案,帮助企业顺利实现大模型的私有化部署。
10 1

热门文章

最新文章