积分图求解Haar特征

简介: Haar特征原理

Haar特征原理


    Haar特征是一种反映图像的灰度变化的,像素分模块求差值的一种特征。它分为三类:边缘特征、线性特征、中心特征和对角线特征。用黑白两种矩形框组合成特征模板, 特征模板内有白色和黑色两种矩形,定义该模板的特征值为白色矩形像素和减去黑色矩形像素和。Haar特征值反映了图像的灰度变化情况。例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等。但矩形特征只对一些简单的图形结构,如边缘、线段较敏感,所以只能描述特定走向(水平、垂直、对角)的结构,Haar特征多用于人脸检测、行人检测。

ae8da31b88924543b9d63d6d16c02d07.png


如上图(1)(2)(3)模块的图像Haar特征为:v=Sum白-Sum黑


(4) 模块的图像Haar特征为:v=Sum白(左)+Sum白(右)-2*Sum黑


这里要保证白色矩形模块中的像素与黑色矩形的模块的像素数相同,所以乘2


f12605a813a848368cef174613c68a6a.png


        当把扫描图像一遍,到达图像右下角像素时,积分图像就构造好了。积分图构造好之后,图像中任何矩阵区域的像素累加和都可以通过简单运算得到如图2所示。而Haar-like特征值无非就是两个矩阵像素和的差,同样可以在常数时间内完成。所以矩形特征的特征值计算,只与此特征矩形的端点的积分图有关,所以不管此特征矩形的尺度变换如何,特征值的计算所消耗的时间都是常量。这样只要遍历图像一次,就可以求得所有子窗口的特征值.

相关文章
|
7月前
|
算法 计算机视觉
图像处理之积分图应用四(基于局部均值的图像二值化算法)
图像处理之积分图应用四(基于局部均值的图像二值化算法)
559 0
|
机器学习/深度学习 传感器 编解码
【图像重建】基于小波变换图像分解重建(PSNR对比)附matlab代码
【图像重建】基于小波变换图像分解重建(PSNR对比)附matlab代码
|
编解码 算法 Java
基于Gabor-小波滤波深度图表面法线的特征提取算法【通过正常Gabor-小波的直方图进行2D或3D特征提取】研究(Matlab代码实现)
基于Gabor-小波滤波深度图表面法线的特征提取算法【通过正常Gabor-小波的直方图进行2D或3D特征提取】研究(Matlab代码实现)
115 0
|
机器学习/深度学习 传感器 算法
【图像分割】基于遗传算法优化一维OTSU实现图像分割附matlab代码
【图像分割】基于遗传算法优化一维OTSU实现图像分割附matlab代码
|
资源调度 算法 机器人
图像特征提取与描述_角点特征02:SIFT算法+SURF算法
前面两节我们介绍了Harris和Shi-Tomasi角点检测算法,这两种算法具有旋转不变性,但不具有尺度不变性,以下图为例,在左侧小图中可以检测到角点,但是图像被放大后,在使用同样的窗口,就检测不到角点了。
225 0
|
算法 API 计算机视觉
图像特征提取与描述_角点特征01:Harris算法+Shi-Tomas算法
Harris角点检测的思想是通过图像的局部的小窗口观察图像,角点的特征是窗口沿任意方向移动都会导致图像灰度的明显变化
218 0
|
机器学习/深度学习 存储 算法
图像特征提取与描述_角点特征03:Fast算法+ORB算法
我们前面已经介绍过几个特征检测器,它们的效果都很好,特别是SIFT和SURF算法,但是从实时处理的角度来看,效率还是太低了。为了解决这个问题,Edward Rosten和Tom Drummond在2006年提出了FAST算法,并在2010年对其进行了修正。
649 0
|
机器学习/深度学习 传感器 算法
【图像分解】基于小波变换实现二维图像分解附matlab代码
【图像分解】基于小波变换实现二维图像分解附matlab代码
|
机器学习/深度学习 传感器 算法
基于meanshift实现点云聚类附matlab代码
基于meanshift实现点云聚类附matlab代码
|
机器学习/深度学习 Python
梯度直方图(HOG)用于图像多分类和图像推荐(上)
梯度直方图(HOG)用于图像多分类和图像推荐
182 0
梯度直方图(HOG)用于图像多分类和图像推荐(上)