【Linux】详谈进程优先级&&进程调度与切换

简介: 【Linux】详谈进程优先级&&进程调度与切换

一、进程优先级

1.1、为什么要有优先级        

       进程要访问某种资源,进程通过一定的方式排队,确认享受资源的优先顺序。计算机中资源过少,所以进程访问某种资源时需要排队。

1.2、优先级的具体表示

       进程的优先级其实就是PCB中的一个整形变量(int PRI)。Linux中进程的默认优先级是80,这个默认优先级是可以被修改的。Linux中优先级的范围是[60,99]。数字越小,进程优先级越高。Linux系统允许用户调整优先级,但是不能直接让你修改PRI的值,而是修改nice值。nice值不是进程的优先级,而是优先级的修正数据。PRI值每次在重新设置的时候都是从80开始。

      对进程优先级设置范围,本质是防止常规进程很难享受到资源的情况,为了防止产生进程饥饿问题。任何的分时操作系统,在进程调度上,都要进行较为公平的调度。

二、进程的调度与切换

      进程被加载到CPU上运行的时候,并不是必须一口气把代码跑完,现代操作系统,都是基于时间片轮转执行的

竞争性: 系统进程数目众多,而CPU资源只有少量,甚至1个,所以进程之间是具有竞争属性的。为了高 效完成任务,更合理竞争相关资源,便具有了优先级。

独立性: 多进程运行,需要独享各种资源,多进程运行期间互不干扰。

并行: 多个进程在多个CPU下分别,同时进行运行,这称之为并行。

并发: 多个进程在一个CPU下采用进程切换的方式,在一段时间之内,让多个进程都得以推进,称之为 并发。

2.1进程的切换

       进程在运行的时候,会产生大量的临时数据,这些临时数据会保存在CPU对应的寄存器中。当一个进程在CPU上的一个时间片跑完时,CPU上寄存器中的数据都会被保存在进程的PCB中(保护上下文)CPU内部的所有临时数据,我们叫做进程的硬件上下文。所有的保存都是为了恢复,所有的恢复都是为了在上次的运行位置继续运行。当进程被二次调度时,将曾经保存的硬件上下文进行恢复,放到CPU上再次运行。

      虽然寄存器数据放在了一个共享的CPU设备里面,但是所有的数据,其实都是被进程私有的。CPU内某一时刻的数据只属于一个进程。

2.2进程的调度

       CPU实现进程调度的算法需要考虑优先级,饥饿问题以及效率问题。CPU的运行队列中有一个queue的task_struct结构体指针数组,该数组的100到139下标正好对应了进程60到99的四十个优先级,比如说有一个优先级为60的进程要被CPU调度了,CPU就会将其链入queue数组的100号下标中(类似于哈希表的结构),每一个队列都对应一个特定的优先级。这样,CPU在调度的时候就可以根据进程的优先级由高到低地调度进程了。如下图所示:

       在图中我们可以看到一个bitmap[5]的数组,该数组每个元素的类型为int,也就是说该数组一共可以表示成160个比特位,比特位的位置表示哪一个队列,比特位的值表示该队列是否为空。所以CPU检测哪一个队列中是否有进程就变成了检测对应的比特位是否为零 这样就可以解决进程判断进程优先级以及效率问题。

       从图中我们还可以看到,蓝色方框和红色方框里的内容是一样的。这其实就涉及到活跃队列和过期队列的概念了。在图上还有两个指针,active指针和expried指针,这两个指针分别指向运行队列和过期队列。当CPU在运行一个活跃队列里面的进程时,可能会不断地有新进程产生,这时CPU会把新产生的进程插入到过期队列中(当一个进程的时间片到了它也会被链入过期队列中)等待活跃队列中的进程都执行完了,交换active指针和expried指针的值,就相当于活跃队列和过期队列互换了,而CPU永远只会执行活跃队列里的进程,所以这种方法可以有效地解决进程饥饿问题。

相关文章
|
4天前
|
算法 调度 UED
探索操作系统核心:进程管理与调度
【9月更文挑战第28天】在数字世界的心脏跳动着无数进程,它们像是细胞一样构成了操作系统的生命体。本文将深入探讨操作系统中进程管理与调度的奥秘,揭示如何通过精心设计的数据结构和算法来维护系统的稳定性和效率。我们将从进程的基本概念出发,逐步解析进程状态转换、进程同步机制,以及进程调度策略,旨在为读者呈现一幅清晰、生动的操作系统内部工作机制图景。
|
2天前
|
算法 Linux 调度
深入理解操作系统的进程调度
【9月更文挑战第30天】本文将带你进入操作系统的核心—进程调度。我们将探讨其工作原理,分析几种常见的调度算法,并通过实际代码示例来揭示这些理论是如何在真实系统中实现的。无论你是初学者还是有经验的开发者,这篇文章都能帮助你更好地理解操作系统的这一关键组成部分。
|
2天前
|
消息中间件 算法 调度
探索操作系统核心:进程管理与调度策略
【9月更文挑战第30天】在数字化时代的心脏,操作系统扮演着至关重要的角色。本文将深入探讨操作系统的基石之一——进程管理,以及如何通过调度策略优化系统性能。我们将从进程的基本概念出发,逐步解析进程状态、进程控制和进程间通信等关键要素。同时,我们会探讨几种常见的进程调度算法,并分析它们的优缺点。最后,文章将展示一个简单的代码示例,以加深对理论部分的理解和应用。
|
3天前
|
算法 调度 UED
探索操作系统的心脏:进程管理与调度
【9月更文挑战第29天】在数字世界的海洋中,操作系统是支撑软件与硬件和谐共舞的桥梁。本文将深入探讨操作系统的核心功能—进程管理及其调度机制,揭示它们是如何影响计算机性能和用户体验的。通过浅显易懂的语言和生动的比喻,我们将一起遨游在进程的生命周期、调度算法以及优先级等概念之间,旨在为读者呈现一个清晰的操作系统内部运作图景。
12 6
|
2天前
|
算法 调度 开发者
深入理解操作系统之进程管理与调度
【9月更文挑战第30天】本文旨在通过浅显易懂的语言和具体代码示例,带领读者探索操作系统中进程管理的奥秘。我们将从进程的生命周期出发,逐步解析进程调度的核心概念,并通过实例展示如何实现简单的进程调度算法。无论你是初学者还是有一定基础的开发者,都能在这篇文章中找到有价值的信息,帮助你更好地理解和掌握进程管理与调度的知识。
11 4
|
5天前
|
算法 调度
操作系统的心脏:深入解析进程调度算法
本文旨在深入探讨现代操作系统中的核心功能之一——进程调度。进程调度算法是操作系统用于分配CPU时间片给各个进程的机制,以确保系统资源的高效利用和公平分配。本文将详细介绍几种主要的进程调度算法,包括先来先服务(FCFS)、短作业优先(SJF)、时间片轮转(RR)以及优先级调度(PS)。我们将分析每种算法的基本原理、优缺点及其适用场景。同时,本文还将讨论多级反馈队列(MFQ)调度算法,并探讨这些算法在实际应用中的表现及未来发展趋势。通过深入解析这些内容,希望能够为读者提供对操作系统进程调度机制的全面理解。
|
6天前
|
算法 调度 UED
探索操作系统中的进程调度
【9月更文挑战第27天】操作系统是计算机的灵魂,而进程调度则是其跳动的心脏。本文将深入浅出地探讨进程调度机制,从理论到实践,带你领略这一技术的魅力和复杂性。我们将通过代码示例,揭示调度算法如何影响系统性能和用户体验。无论你是初学者还是有经验的开发者,这篇文章都将为你打开一扇理解操作系统深层工作原理的大门。
16 6
|
3天前
|
算法 调度 UED
深入理解操作系统:进程管理与调度策略
【9月更文挑战第29天】在数字世界的心脏,操作系统悄无声息地跳动着,它的健康直接关系到整个计算生态系统的活力。本文将带领读者穿梭于操作系统的微观世界,探索进程管理的奥秘和调度策略的智慧。我们将从进程的基本概念出发,逐步深入到进程的生命周期管理,最后探讨不同的进程调度算法及其对系统性能的影响。通过深入浅出的方式,让读者能够更好地理解并掌握操作系统中进程管理的核心知识。
|
6天前
|
算法 程序员 调度
深入理解操作系统之进程调度
【9月更文挑战第27天】本文旨在通过浅显易懂的语言和生动的比喻,带领读者走进操作系统的核心——进程调度。我们将从进程的基本概念出发,探讨进程调度的重要性、常见算法及其在现代操作系统中的应用。通过本文,你将获得对操作系统中这一复杂机制的直观理解,并学会如何在实际编程中有效利用进程调度来优化程序性能。
|
4天前
|
算法 Linux 调度
深入理解操作系统中的进程调度
【9月更文挑战第28天】在操作系统的复杂世界中,进程调度是维持系统高效运作的关键。本文将深入浅出地探讨进程调度的核心概念及其对系统性能的影响。从进程调度的定义和目标出发,逐步解析不同类型的调度算法,并通过实际代码示例,揭示这些算法如何在真实系统中实施。无论你是初学者还是有经验的开发者,这篇文章都将为你提供宝贵的见解和知识。
下一篇
无影云桌面