基于HSV色度空间的图像深度信息提取算法FPGA实现,包含testbench和MATLAB辅助验证程序

简介: 该文档介绍了在一个FPGA项目中使用HSV色彩模型提取图像深度信息的过程。通过将RGB图像转换为HSV,然后利用明度与深度的非线性映射估计深度。软件版本为Vivado 2019.2和MATLAB 2022a。算法在MATLAB中进行了对比测试,并在FPGA上实现了优化,包括流水线并行处理和查找表技术。提供的Verilog代码段展示了RGB到灰度的转换。实验结果和核心程序的图片未显示。

1.算法运行效果图预览

image.png

将FPGA结果导入到matlab显示结果如下:

image.png

matlab的对比测试结果如下:

image.png

2.算法运行软件版本
vivado2019.2

matlab2022a

3.算法理论概述
在HSV(Hue, Saturation, Value)色彩模型中,颜色由色调(H)、饱和度(S)和明度(V)三个参数表示。对于深度信息提取而言,通常利用的是场景中物体表面光照变化对明度(Value)的影响,以及色彩相对不变性来推测深度层次。

   假设在理想条件下,光源强度恒定且均匀照射到不同距离的物体上,根据逆平方定律,离相机越远的物体接收到的光强会越弱,因此在灰度图像或HSV中的V通道上表现为亮度下降。由此可初步构建从明度到深度的非线性映射关系:

V=k/d+b

其中,V 是明度值,d 是深度,k 和 b 是与光源强度和环境有关的常数。

然而,在实际应用中这种关系需要通过学习或其他图像处理方法获得更精确的模型。

FPGA实现流程概览

输入处理: 将RGB图像转换为HSV色彩空间:
image.png

深度信息提取: 设计特定的硬件逻辑单元,利用预训练的或者理论推导出的深度映射函数,将HSV中的V通道值映射到深度估计值。

优化计算资源: FPGA设计中应考虑流水线并行处理多个像素点,以提高计算效率。同时,可能采用查找表(LUT)方式存储预计算好的深度映射关系,减少实时计算负担。

输出与后处理: 输出深度图,可能还需要进行噪声抑制、边缘平滑等后处理步骤,这些也可以在FPGA上实现相应的数字信号处理模块。

  需要注意的是,以上描述简化了实际问题的复杂性,真实环境中还需考虑许多其他因素,例如遮挡、反射、阴影等对深度感知的影响。此外,FPGA实现时具体电路设计和算法优化将取决于目标硬件平台的特性及资源限制。

      总结来说,基于HSV色度空间的图像深度信息提取在FPGA上实现涉及到色彩空间转换、明度与深度之间的映射建模、以及针对FPGA架构特点的并行计算和资源优化设计等多个环节。

4.部分核心程序
````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2023/08/01
// Design Name:
// Module Name: RGB2gray
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//
//MATLAB/verilog/python/opencv/tensorflow/caffe/C/C++等算法仿真
//微信公众号:matlabworld

module test_image;

reg i_clk;
reg i_rst;
reg [7:0] Rbuff [0:100000];
reg [7:0] Gbuff [0:100000];
reg [7:0] Bbuff [0:100000];
reg [7:0] i_Ir,i_Ig,i_Ib;
wire [10:0]o_depth;

integer fids1,dat1,fids2,dat2,fids3,dat3,jj=0;

//D:\FPGA_Proj\FPGAtest\codepz
initial
begin
fids1 = $fopen("D:\FPGA_Proj\FPGAtest\codepz\R.bmp","rb");
dat1 = $fread(Rbuff,fids1);
$fclose(fids1);
end

initial
begin
fids2 = $fopen("D:\FPGA_Proj\FPGAtest\codepz\G.bmp","rb");
dat2 = $fread(Gbuff,fids2);
$fclose(fids2);
end

initial
begin
fids3 = $fopen("D:\FPGA_Proj\FPGAtest\codepz\B.bmp","rb");
dat3 = $fread(Bbuff,fids3);
$fclose(fids3);
end

initial
begin
i_clk=1;
i_rst=1;

1200;

i_rst=0;
end

always #5 i_clk=~i_clk;

always@(posedge i_clk)
begin
i_Ir<=Rbuff[jj];
i_Ig<=Gbuff[jj];
i_Ib<=Bbuff[jj];
jj<=jj+1;
end

main_RGB2HSV main_RGB2HSV_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_image_R (i_Ir),
.i_image_G (i_Ig),
.i_image_B (i_Ib),
.o_depth (o_depth)
);

integer fout1;
initial begin
fout1 = $fopen("o_depth.txt","w");
end

always @ (posedge i_clk)
begin
if(jj<=66616 & jj>66616-65536)
$fwrite(fout1,"%d\n",o_depth);
else
$fwrite(fout1,"%d\n",0);
end

endmodule

```

相关文章
|
3月前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
4月前
|
监控 算法 安全
基于颜色模型和边缘检测的火焰识别FPGA实现,包含testbench和matlab验证程序
本项目展示了基于FPGA的火焰识别算法,可在多种应用场景中实时检测火焰。通过颜色模型与边缘检测技术,结合HSV和YCbCr颜色空间,高效提取火焰特征。使用Vivado 2019.2和Matlab 2022a实现算法,并提供仿真结果与测试样本。FPGA平台充分发挥并行处理优势,实现低延迟高吞吐量的火焰检测。项目包含完整代码及操作视频说明。
|
6月前
|
异构计算
FPGA进阶(3):SDRAM读写控制器的设计与验证(二)
FPGA进阶(3):SDRAM读写控制器的设计与验证(二)
49 0
|
6月前
|
异构计算 内存技术
FPGA进阶(3):SDRAM读写控制器的设计与验证(一)
FPGA进阶(3):SDRAM读写控制器的设计与验证
143 0
|
10天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
143 80
|
3天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
6天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
2天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
7天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
29天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。