隐私计算实训营第6讲-------隐语PIR介绍及开发实践丨隐私计算实训营 第1期

简介: 隐匿查询(PIR)允许用户在不暴露查询内容的情况下检索服务器数据库。PIR分为单服务器和多服务器方案,以及Index PIR和Keyword PIR两类。隐语目前实现了单服务器的SealPIR(用于Index PIR)和Labeled PSI(用于Keyword PIR)。SealPIR优化点包括:数据打包、查询向量压缩、支持多维和多个查询。未来,隐语PIR的计划包括性能提升、多服务器方案和新算法的探索。

隐匿查询(Private Information Retrieval PIR)定义

用户查询服务端数据库中的数据,但服务端不知道用户查询的是哪些数据
image.png
按服务器数量分类:
Ø 单服务器方案(Single Server)
Ø 多服务器方案(Multi-Server)
按查询类型分类:
Ø Index PIR
Ø Keyword PIR

隐语目前支持的PIR方式:
Single Server Index PIR : SealPIR
Single Server Keyword PIR:Labeled PSI

Index PIR-SealPIR介绍

image.png
SealPIR主要贡献:
• 多个数据pack到一个HE Plaintext
查询的db_index转换为plaintext_index
• 查询向量压缩到一个密文
显著减少通信量,server端可通过计算expand得到查询密文向量
• 支持多维查询
2维查询将数据转换为 根号n ∗ 根号n 的矩阵,减少expand计算量
• 支持多个查询
使用cuckoo hash支持同时进行多个查询

Index PIR-SealPIR介绍

image.png

Keyword PIR-Label SPI介绍

image.png

隐语 PIR后续计划

image.png

相关文章
|
8月前
|
算法 数据挖掘 调度
隐语实训营-第3讲:详解隐私计算框架的架构和技术要点
主要介绍隐语的隐私计算架构,并对每个模块进行拆解、分析,以期望不同使用者找到适合自己的模块,快速入手。
151 4
|
8月前
|
机器学习/深度学习 算法 数据可视化
# 隐私计算实训营note#3 详解隐私计算框架及技术要点
这一讲的内容是介绍蚂蚁的SecretFlow框架[第3讲:详解隐私计算框架及技术要点](https://www.bilibili.com/video/BV1dJ4m1b7AX/)。
|
8月前
|
机器学习/深度学习 算法 安全
隐私计算训练营第三讲-详解隐私计算的架构和技术要点
SecretFlow 是一个隐私保护的统一框架,用于数据分析和机器学习,支持MPC、HE、TEE等隐私计算技术。它提供设备抽象、计算图表示和基于图的ML/DL能力,适应数据水平、垂直和混合分割场景。产品层包括SecretPad(快速体验核心能力)和SecretNote(开发工具)。算法层涉及PSI、PIR、数据分析和联邦学习(水平、垂直、混合)。此外,SecretFlow还有YACL密码库和Kusica任务调度框架,Kusica提供轻量化部署、跨域通信和统一API接口。
251 0
|
8月前
|
算法 安全 大数据
隐私计算实训营第5讲-------隐私求交和隐语PSI介绍以及开发实践
隐私求交(Private Set Intersection, PSI)是利用密码学技术在不暴露数据集以外信息的情况下找到两集合的交集。隐语SPU支持三种PSI算法:ECDH(适合小数据集)、KKRT(基于Cuckoo Hashing和OT Extension,适合大数据集)和BC22PCG(使用伪随机相关生成器)。ECDH基于椭圆曲线 Diffie-Hellman,KKRT利用OT Extension实现高效处理,而BC22PCG通过压缩满足特定相关性的随机数减少通信量。此外,还有基于Oblivious Pseudo-Random Function (OPRF)的PSI协议。
618 0
|
8月前
|
监控 安全 数据可视化
第9讲:隐语多方安全计算在安全核对的行业实践丨隐私计算实训营 第1期
行业法规趋势强调数据安全与隐私保护,如《个人信息安全规范》、《数据安全法》和《个人信息保护法》,倡导最小权限原则和数据的有效利用。产品方案致力于在保障安全和隐私的前提下促进数据共享。技术共建中,与隐语合作构建安全自证能力,包括可审查性、可视化监控和可攻防的验证机制,确保数据操作透明且安全。
85 1
|
8月前
|
机器学习/深度学习 运维 安全
隐私计算实训营 第1期 【第1讲】
隐私计算实训营 第1期 【第1讲】—— 导论 | 数据可信流通 从运维信任到技术信任
163 3
|
8月前
|
SQL 算法 安全
隐私计算实训营 第三讲 详解隐私计算框架及技术要点
隐语架构包括产品、算法、计算、资源和硬件层。产品层关注可视化和模块化API,服务于集成商和研究人员。算法层涉及PSI/PIR、安全数据分析及联邦学习。计算层有混合编译调度、SPU、HEU、TEEU和YACL。资源层采用kuscia,基于K8s的隐私计算框架。硬件层未详述。互通互联提供黑盒和白盒模式,跨域管控实施三权分置、秘态存储和全栈审计。该架构设计便于集成和使用。
89 0
隐私计算实训营 第三讲 详解隐私计算框架及技术要点
|
8月前
|
Linux Docker 容器
隐私计算实训营第4讲-------快速上手隐语SecretFlow的安装和部署
考虑到很多小伙伴可能是初学者之前并没有安装docker 以及docker-compose的经验,本文记录如何在Linux系统上快速的部署docker以及更换国内镜像源。在部署完成以后展示了隐语从源码编译部署以及secretnote的安装,简单快速,非常实用。
265 1
|
8月前
|
运维 安全 数据安全/隐私保护
|
8月前
|
SQL 安全 数据挖掘
隐私计算实训营第7讲:隐语SCQL的架构详细拆解丨隐私计算实训营 第1期
SCQL是安全协作查询语言,让不信任的多方能在保护隐私的前提下进行联合数据分析。它假设参与者半诚实,支持多方(N>=2)合作,且具备SQL语法支持和性能优化。SCQL提供类似SQL的用户界面,通过CCL机制允许数据所有者控制数据使用权限。系统基于SPU的MPC框架运行,适用于多个应用场景。
181 0