【PyTorch&TensorBoard实战】GPU与CPU的计算速度对比(附代码)

简介: 【PyTorch&TensorBoard实战】GPU与CPU的计算速度对比(附代码)

0. 前言

按照国际惯例,首先声明:本文只是我自己学习的理解,虽然参考了他人的宝贵见解,但是内容可能存在不准确的地方。如果发现文中错误,希望批评指正,共同进步。


本文基于PyTorch通过tensor点积所需要的时间来对比GPU与CPU的计算速度,并介绍tensorboard的使用方法。


我在前面的科普文章——GPU如何成为AI的加速器GPU如何成为AI的加速器_使者大牙的博客-CSDN博客GPU如何成为AI的加速器 解释了GPU的多核心架构相比CPU更适合简单大量的计算,而深度学习计算的底层算法就是大量矩阵的点积和相加,本文将通过张量的点积运算来说明:与CPU相比,GPU有多“适合”深度学习算法。


加法相比于点积的计算量太小了,我感觉体现不出GPU的优势,所以没有用加法来对比两者的算力差距。

1. 准备工作

1.0 一台有Nvidia独立显卡的电脑

既然要使用GPU计算,一台有Nvidia独立显卡=支持CUDA的GPU的电脑就是必须的前置条件。如果不清楚CUDA、GPU和Nvidia关系的同学,可以再看下我的文章:GPU如何成为AI的加速器_使者大牙的博客-CSDN博客


1.1 PyTorch

在PyTorch的官网:Start Locally | PyTorch 选择合适的版本:

这里需要注意的是PyTorch的CUDA版本需要匹配电脑的GPU的CUDA版本,一般来说电脑>PyTorch的CUDA版本就没问题了。


例如我安装的PyTorch是CUDA 11.8版本,我的GPU驱动版本是12.2(查看路径:Nvidia控制面板>帮助>系统信息)。


1.2 Tensorboard

Tensorboard是TensorFlow官方提供的一个可视化工具,用于可视化训练过程中的模型图、训练误差、准确率、训练后的模型参数等,同时还提供了交互式的界面,让用户可以更加方便、直观地观察和分析模型。


这里需要注意的是Tensorboard虽然是由TensorFlow提供的,但是使用Tensorboard不需要安装TensorFlow!只要在虚拟环境下安装TensorboardX和Tensorboard即可,我使用的是Anaconda Prompt:


pip install tensorboardX
pip install tensorboard

其使用方法为:

from torch.utils.tensorboard import SummaryWriter
 
 
writer = SummaryWriter("../logs")  #这里有两个"."
 
writer.add_scalars(main_tag, tag_scalar_dict, global_step=None):
 
writer.close()


另外需要注意SummaryWriter后面的路径要有两个“.”,这是因为我的代码文件在D:\DL\CUDA_test二级文件夹下面,我们需要把生成的tensorboard的event文件放在D:\DL\logs下面,而不是D:\DL\CUDA_test\logs路径下。这样做的理由是避免tensorboard报“No scalar data was found”



这里使用的是.add_scalars()方法来绘制多条曲线,参数如下:


  • main_tag:字符串类型,要绘制的曲线主标题,本实例为“GPU vs CPU”
  • tag_scalar_dict:字典类型,要绘制多条曲线的因变量,本实例为GPU和CPU的计算时间

{'GPU':CUDA,'CPU':CPU}

  • global_step: 标量,要绘制多条曲线的因变量,本实例为张量的大小tensor_size


在event文件生成后再在PyCharm的终端输入 tensorboard --logdir=logs ,点击链接就可以在浏览器中查看生成的曲线了。



2. 对比GPU与CPU的计算速度

本文的实例问题非常简单:分别使用CPU和GPU对尺寸为[tensor_size, tensor_size]的2个张量进行点积运算,使用time库工具对计算过程进行计时,对比CPU和GPU所消耗的时间。张量的大小tensor_size取值从1到10000。


我使用的硬件信息如下:

CPU:AMD Ryzen 9 7940H

GPU:NVIDIA GeForce RTX 4060


CPU计算时间:


import torch
import time
 
 
def CPU_calc_time(tensor_size):
    a = torch.rand([tensor_size,tensor_size])
    b = torch.rand([tensor_size,tensor_size])
    start_time = time.time()
    torch.matmul(a,b)
    end_time = time.time()
 
    return end_time - start_time


GPU计算时间:


import torch
import time
 
def CUDA_calc_time(tensor_size):
    device = torch.device('cuda')
 
    a = torch.rand([tensor_size,tensor_size]).to(device)
    b = torch.rand([tensor_size,tensor_size]).to(device)
    start_time = time.time()
    torch.matmul(a,b).to(device)
    end_time = time.time()
 
    return end_time - start_time


3. 结果分析

最终生成的CPU和GPU计算张量点积的时间曲线如下:

从图中可以看出,随着张量尺寸的增大,CPU计算时间明显增加(0~11.3s),而GPU的计算时间基本不变(0.001s左右),张量尺寸越大GPU的计算优势就越明显。

4. 完整代码

import torch
import time
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
 
torch.manual_seed(1)
 
def CPU_calc_time(tensor_size):
    a = torch.rand([tensor_size,tensor_size])
    b = torch.rand([tensor_size,tensor_size])
    start_time = time.time()
    torch.matmul(a,b)
    end_time = time.time()
 
    return end_time - start_time
 
def CUDA_calc_time(tensor_size):
    device = torch.device('cuda')
 
    a = torch.rand([tensor_size,tensor_size]).to(device)
    b = torch.rand([tensor_size,tensor_size]).to(device)
    start_time = time.time()
    torch.matmul(a,b).to(device)
    end_time = time.time()
 
    return end_time - start_time
 
 
if __name__ == "__main__":
 
    writer = SummaryWriter("../logs")
 
    for tensor_size in tqdm(range(1,10000,50)):
 
        CPU = CPU_calc_time(tensor_size)
        CUDA = CUDA_calc_time(tensor_size)
        writer.add_scalars('GPU vs CPU',{'GPU':CUDA,'CPU':CPU},tensor_size)
 
    writer.close()
 
# Command Prompt   "tensorboard --logdir=logs"


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
2月前
|
弹性计算 人工智能 Serverless
阿里云ACK One:注册集群云上节点池(CPU/GPU)自动弹性伸缩,助力企业业务高效扩展
在当今数字化时代,企业业务的快速增长对IT基础设施提出了更高要求。然而,传统IDC数据中心却在业务存在扩容慢、缩容难等问题。为此,阿里云推出ACK One注册集群架构,通过云上节点池(CPU/GPU)自动弹性伸缩等特性,为企业带来全新突破。
|
3月前
|
监控 异构计算
Jetson 学习笔记(八):htop查看CPU占用情况和jtop监控CPU和GPU
在NVIDIA Jetson平台上使用htop和jtop工具来监控CPU、GPU和内存的使用情况,并提供了安装和使用这些工具的具体命令。
234 0
|
3月前
|
监控 并行计算 数据处理
构建高效Python应用:并发与异步编程的实战秘籍,IO与CPU密集型任务一网打尽!
在Python编程的征途中,面对日益增长的性能需求,如何构建高效的应用成为了每位开发者必须面对的课题。并发与异步编程作为提升程序性能的两大法宝,在处理IO密集型与CPU密集型任务时展现出了巨大的潜力。今天,我们将深入探讨这些技术的最佳实践,助你打造高效Python应用。
47 0
|
22天前
|
人工智能 缓存 并行计算
转载:【AI系统】CPU 计算本质
本文深入探讨了CPU计算性能,分析了算力敏感度及技术趋势对CPU性能的影响。文章通过具体数据和实例,讲解了CPU算力的计算方法、算力与数据加载之间的平衡,以及如何通过算力敏感度分析优化计算系统性能。同时,文章还考察了服务器、GPU和超级计算机等平台的性能发展,揭示了这些变化如何塑造我们对CPU性能的理解和期待。
转载:【AI系统】CPU 计算本质
|
1月前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
102 7
|
2月前
|
机器学习/深度学习 弹性计算 人工智能
阿里云服务器架构有啥区别?X86计算、Arm、GPU异构、裸金属和高性能计算对比
阿里云ECS涵盖x86、ARM、GPU/FPGA/ASIC、弹性裸金属及高性能计算等多种架构。x86架构采用Intel/AMD处理器,适用于广泛企业级应用;ARM架构低功耗,适合容器与微服务;GPU/FPGA/ASIC专为AI、图形处理设计;弹性裸金属提供物理机性能;高性能计算则针对大规模并行计算优化。
|
2月前
|
人工智能 缓存 并行计算
【AI系统】CPU 计算本质
本文深入探讨了CPU计算性能,分析了算力敏感度及技术趋势对CPU性能的影响。文章通过具体数据和实例,解释了算力计算方法、数据加载与计算的平衡点,以及如何通过算力敏感度分析优化性能瓶颈。同时,文章还讨论了服务器、GPU和超级计算机等不同计算平台的性能发展趋势,强调了优化数据传输速率和加载策略的重要性。
58 4
|
2月前
|
缓存 人工智能 算法
【AI系统】CPU 计算时延
CPU(中央处理器)是计算机系统的核心,其计算时延(从指令发出到完成所需时间)对系统性能至关重要。本文探讨了CPU计算时延的组成,包括指令提取、解码、执行、存储器访问及写回时延,以及影响时延的因素,如时钟频率、流水线技术、并行处理、缓存命中率和内存带宽。通过优化这些方面,可以有效降低计算时延,提升系统性能。文中还通过具体示例解析了时延产生的原因,强调了内存时延对计算速度的关键影响。
46 0
|
3月前
|
机器学习/深度学习 人工智能 并行计算
CPU和GPU的区别
【10月更文挑战第14天】
|
3月前
|
机器学习/深度学习 并行计算 算法
GPU加速与代码性能优化:挖掘计算潜力的深度探索
【10月更文挑战第20天】GPU加速与代码性能优化:挖掘计算潜力的深度探索