一键实现数据采集和存储:Python爬虫、Pandas和Excel的应用技巧

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 一键实现数据采集和存储:Python爬虫、Pandas和Excel的应用技巧

作为一名互联网技术爱好者,我对数据的探索充满热情。在本文中,我将以豆瓣读书为案例,详细介绍如何利用Python爬虫、Pandas和Excel这三大工具,一键化地实现数据采集和存储。豆瓣读书作为一个备受推崇的图书评价平台,拥有大量的书籍信息和用户评价数据,适合我们展示数据处理过程。
Pandas简介
在数据处理领域,Python中的Pandas库是一款备受欢迎的工具,它提供了高效的数据结构和数据分析工具,使得数据的处理变得更加简单、快速。主要的数据结构包括Series(一维数据)和DataFrame(二维数据表),这些数据结构为数据分析提供了基础。Pandas支持数据导入、数据清洗、数据操作和数据分析等功能,并且提供了丰富的数据可视化能力,让数据更具有可视化的魅力。
Python中Excel的作用
作为一款被广泛运用的办公软件,Excel在数据处理和分析领域同样扮演着重要的角色。在Python中,我们可以通过Pandas库将处理好的数据导出到Excel文件,从而方便更多人员查看和分析数据。Excel提供了众多功能,比如数据透视表、图表制作等,这些功能可以使数据展示更生动更具有说服力,帮助我们更好地呈现数据分析结果。
案例过程
Python爬虫实现豆瓣读书数据采集
首先,让我们从爬虫的角度出发,使用Python来实现对豆瓣读书网站的数据采集工作。通过发送HTTP请求,我们可以获取网页内容,接着利用Beautiful Soup库来解析页面结构,从而提取出我们需要的书籍信息,如书名、作者、评分和评论等。将这些数据存储为DataFrame结构,将会为后续的数据处理和分析提供便利。
```# 导入所需库
import requests
from bs4 import BeautifulSoup
import pandas as pd
import random

设置代理信息

proxyHost = "www.16yun.cn"
proxyPort = "5445"
proxyUser = "16QMSOML"
proxyPass = "280651"
proxyMeta = "http://%(user)s:%(pass)s@%(host)s:%(port)s" % {
"host": proxyHost,
"port": proxyPort,
"user": proxyUser,
"pass": proxyPass,
}

proxies = {
"http": proxyMeta,
"https": proxyMeta,
}

设置随机User-Agent

user_agents = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3",
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.133 Safari/537.36 OPR/44.0.2510.1449",
"Mozilla/5.0 (Windows NT 10.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.99 Safari/537.36",
]

headers = {
"User-Agent": random.choice(user_agents),
}

发起HTTP请求,获取网页内容

url = 'https://book.douban.com/top250?start=0'
response = requests.get(url, headers=headers, proxies=proxies)
soup = BeautifulSoup(response.text, 'html.parser')

解析页面内容,提取书籍信息

books = []
for item in soup.findall('tr', class='item'):
title = item.find('div', class='pl2').find('a').text.strip()
author = item.find('p', class
='pl').text.strip()
rating = item.find('span', class_='ratingnums').text.strip()
comments = item.find('span', class
='pl').text.strip()
books.append({'Title': title, 'Author': author, 'Rating': rating, 'Comments': comments})

将数据转化为DataFrame

df = pd.DataFrame(books)

打印输出结果

print(df)



Pandas的数据处理和分析
接下来,我们将导入爬取到的数据,运用Pandas库进行数据处理和分析。通过Pandas的强大功能,我们可以进行数据清洗、统计计算、数据筛选等操作。比如计算平均评分、统计评论数量等,这些数据分析结果将有助于我们更好地了解书籍情况和用户评价。

```# 数据清洗与分析
df['Rating'] = df['Rating'].astype(float)  # 将评分列转换为浮点型数据

# 统计平均评分和评论数量
average_rating = df['Rating'].mean()
comments_count = df['Comments'].count()

# 输出统计结果
print(f'平均评分:{average_rating}')
print(f'评论数量:{comments_count}')

利用Excel进行数据存储和展示
最后一步,我们将处理好的数据导出到Excel文件中,借助Excel的功能,我们可以轻松制作数据报表和图表,更加直观地展示数据分析结果。
# 导出数据至Excel df.to_excel('douban_books_data.xlsx', index=False)
在Excel中,我们可以通过多种图表类型来展示数据,如柱状图、折线图、饼图等,让数据更生动、更易于理解。这种可视化的展示形式不仅能更好地传达数据分析结果,也能让我们即时发现数据之间的关联和规律。
总结
通过以上的实例演示,我们深度探索了如何利用Python爬虫、Pandas和Excel这三大工具,实现数据的一键化采集、处理和展示。从爬取豆瓣读书数据,到利用Pandas进行数据清洗和分析,再到最终将结果导出到Excel中,全程贯穿着数据处理的完整流程。

相关文章
|
16天前
|
数据采集 存储 XML
Python爬虫:深入探索1688关键词接口获取之道
在数字化经济中,数据尤其在电商领域的价值日益凸显。1688作为中国领先的B2B平台,其关键词接口对商家至关重要。本文介绍如何通过Python爬虫技术,合法合规地获取1688关键词接口,助力商家洞察市场趋势,优化营销策略。
|
1天前
|
数据采集 JSON API
如何利用Python爬虫淘宝商品详情高级版(item_get_pro)API接口及返回值解析说明
本文介绍了如何利用Python爬虫技术调用淘宝商品详情高级版API接口(item_get_pro),获取商品的详细信息,包括标题、价格、销量等。文章涵盖了环境准备、API权限申请、请求构建和返回值解析等内容,强调了数据获取的合规性和安全性。
|
6天前
|
数据采集 存储 API
利用Python爬虫获取1688关键词接口全攻略
本文介绍如何使用Python爬虫技术合法合规地获取1688关键词接口数据,包括环境准备、注册1688开发者账号、获取Access Token、构建请求URL、发送API请求、解析HTML及数据处理存储等步骤,强调遵守法律法规和合理使用爬虫技术的重要性。
|
13天前
|
数据采集 JSON 开发者
Python爬虫京东商品详情数据接口
京东商品详情数据接口(JD.item_get)提供商品标题、价格、品牌、规格、图片等详细信息,适用于电商数据分析、竞品分析等。开发者需先注册账号、创建应用并申请接口权限,使用时需遵循相关规则,注意数据更新频率和错误处理。示例代码展示了如何通过 Python 调用此接口并处理返回的 JSON 数据。
|
18天前
|
XML 数据采集 数据格式
Python 爬虫必备杀器,xpath 解析 HTML
【11月更文挑战第17天】XPath 是一种用于在 XML 和 HTML 文档中定位节点的语言,通过路径表达式选取节点或节点集。它不仅适用于 XML,也广泛应用于 HTML 解析。基本语法包括标签名、属性、层级关系等的选择,如 `//p` 选择所有段落标签,`//a[@href='example.com']` 选择特定链接。在 Python 中,常用 lxml 库结合 XPath 进行网页数据抓取,支持高效解析与复杂信息提取。高级技巧涵盖轴的使用和函数应用,如 `contains()` 用于模糊匹配。
|
20天前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。
|
19天前
|
数据采集 JavaScript 前端开发
Python爬虫能处理动态加载的内容吗?
Python爬虫可处理动态加载内容,主要方法包括:使用Selenium模拟浏览器行为;分析网络请求,直接请求API获取数据;利用Pyppeteer控制无头Chrome。这些方法各有优势,适用于不同场景。
|
1月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
99 6
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
214 4
|
4月前
|
数据采集 存储 搜索推荐
打造个性化网页爬虫:从零开始的Python教程
【8月更文挑战第31天】在数字信息的海洋中,网页爬虫是一艘能够自动搜集网络数据的神奇船只。本文将引导你启航,用Python语言建造属于你自己的网页爬虫。我们将一起探索如何从无到有,一步步构建一个能够抓取、解析并存储网页数据的基础爬虫。文章不仅分享代码,更带你理解背后的逻辑,让你能在遇到问题时自行找到解决方案。无论你是编程新手还是有一定基础的开发者,这篇文章都会为你打开一扇通往数据世界的新窗。