卷积神经元网络中常用卷积核理解及基于Pytorch的实例应用(附完整代码)

简介: 卷积神经元网络中常用卷积核理解及基于Pytorch的实例应用(附完整代码)
0.前言

本文的目的:说明在卷积操作中常用的卷积核及其作用原理,并基于Pytorch框架通过实例使用这些卷积核。


看本文前要掌握的基础知识:需要了解卷积神经元网络CNN中卷积的运算原理,CSDN上此类文章很多,不再赘述。推荐一篇:RGB彩色图像的卷积过程(gif动图演示)


1.常用卷积核

卷积核(kernel)是卷积神经元网络CNN中最重要的权重参数,在卷积神经元网络学习过程中,主要也是为了学习到合适的卷积核。下面将通过对图像的处理方式将常用的卷积核分为3类。


1.1 边缘识别类卷积核

这类卷积核是研究最多的,卷积核多种多样。这类卷积核的共同特征是:卷积核内所有的值求和为0,这是因为边缘的区域,图像的像素值会发生突变,与这样的卷积核做卷积会得到一个不为0的值。而非边缘的区域,像素值很接近,与这样的卷积核做卷积会得到一个约等于0的值。


常用的边缘检测卷积核有:

①Robert算子

image.png

image.png

②Prewitt算子

image.png

image.png

③Sobel算子

image.png

image.png

④Laplace算子

image.png

1.2 模糊化卷积核

这类卷积核的作用原理是对一片区域内的像素值求平均值,使得像素变化更加平缓,达到模糊化的目的,例如:

image.png

1.3 锐利化卷积核

这类卷积核的作用是凸显像素值有变化的区域,使得本来像素值梯度就比较大的区域(边缘区域)变得像素值梯度更大。在边缘检测中,卷积核的设计要求卷积核内的所有值求和为0,这里的要求刚好相反,要求卷积核内的所有值应该不为0,凸显出像素值梯度较大的区域,例如以下卷积核:

image.png

只要把握以上卷积核的原理,就可以自己设计卷积核。比如模糊化卷积核,这样也是可以的

image.png
2. 基于Pytorch的卷积核实例应用
2.1 tensor与图像的互相转换

①image转tensor:使用PIL中Image.open()打开图像,然后使用torchvision.transforms.ToTensor()转为tensor:

image = Image.open('image_path').convert('RGB') #导入图片
image_to_tensor = torchvision.transforms.ToTensor()   #实例化ToTensor
original_image_tensor = image_to_tensor(image).unsqueeze(0)     #把图片转换成tensor

这里使用.unsqueeze(0)升维的目的是为了后面进行卷积操作准备,因为Conv2d要求输入的tensor维度为4维,即[batch, channel, H, W]。这里对应要增加batch这个维度。

②tensor转image:使用torchvision.utils.save_image():

torchvision.utils.save_image(tensor, 'save_image_path')
2.2 卷积核的指定

因为nn.Conv2d()方法中,卷积核(权重)是默认随机的,所以需要先指定好卷积核:

#卷积核:laplace
conv_laplace = torch.nn.Conv2d(in_channels=3,out_channels=1,kernel_size=3,padding=0,bias=False)
conv_laplace.weight.data = torch.tensor([[[[-1,0,1],[-1,0,1],[-1,0,1]],
                                            [[-1,0,1],[-1,0,1],[-1,0,1]],
                                            [[-1,0,1],[-1,0,1],[-1,0,1]]]], dtype=torch.float32)

注意卷积核的维度,也是上面说的要有4个维度。

3.不同卷积核的图像处理结果

①原图像:

②边缘检测卷积核(prewitt横向算子)卷积后:

③边缘检测卷积核(prewitt纵向算子)卷积后:

④边缘检测卷积核(laplace算子)卷积后:

体验一下同样是边缘检测,以上3个算子的输出差异。尤其是横向和纵向上的差别。

⑤模糊化卷积核卷积后:

⑥锐利化卷积核卷积后:

这里把背景的噪声点都凸显出来了。

4.完整代码
import torch
from PIL import Image
import torchvision


image = Image.open('girl.png').convert('RGB') #导入图片
image_to_tensor = torchvision.transforms.ToTensor()   #实例化ToTensor
original_image_tensor = image_to_tensor(image).unsqueeze(0)     #把图片转换成tensor


#卷积核:prewitt横向
conv_prewitt_h = torch.nn.Conv2d(in_channels=3,out_channels=1,kernel_size=3,padding=0,bias=False)  #bias要设定成False,要不然会随机生成bias,每次结果都不一样
conv_prewitt_h.weight.data = torch.tensor([[[[-1,-1,-1],[0,0,0],[1,1,1]],
                                            [[-1,-1,-1],[0,0,0],[1,1,1]],
                                            [[-1,-1,-1],[0,0,0],[1,1,1]]]], dtype=torch.float32)


#卷积核:prewitt纵向
conv_prewitt_l = torch.nn.Conv2d(in_channels=3,out_channels=1,kernel_size=3,padding=0,bias=False)
conv_prewitt_l.weight.data = torch.tensor([[[[-1,0,1],[-1,0,1],[-1,0,1]],
                                            [[-1,0,1],[-1,0,1],[-1,0,1]],
                                            [[-1,0,1],[-1,0,1],[-1,0,1]]]], dtype=torch.float32)

#卷积核:laplace
conv_laplace = torch.nn.Conv2d(in_channels=3,out_channels=1,kernel_size=3,padding=0,bias=False)
conv_laplace.weight.data = torch.tensor([[[[-1,0,1],[-1,0,1],[-1,0,1]],
                                            [[-1,0,1],[-1,0,1],[-1,0,1]],
                                            [[-1,0,1],[-1,0,1],[-1,0,1]]]], dtype=torch.float32)


#卷积核:模糊化
conv_blur = torch.nn.Conv2d(in_channels=3,out_channels=1,kernel_size=5,padding=0,bias=False)
conv_blur.weight.data = torch.full((1,3,5,5),0.04)


#卷积核:锐利化
conv_sharp = torch.nn.Conv2d(in_channels=3,out_channels=1,kernel_size=3,padding=0,bias=False)
conv_sharp.weight.data = torch.tensor([[[[-1,-1,1],[-1,-1,-1],[-1,-1,-1]],
                                            [[-1,-1,1],[-1,22,-1],[-1,-1,-1]],
                                            [[-1,-1,1],[-1,-1,-1],[-1,-1,-1]]]], dtype=torch.float32)

#生成并保存图片
tensor_prewitt_h = conv_prewitt_h(original_image_tensor)
torchvision.utils.save_image(tensor_prewitt_h, 'prewitt_h.png')

tensor_prewitt_l = conv_prewitt_l(original_image_tensor)
torchvision.utils.save_image(tensor_prewitt_l, 'prewitt_l.png')

tensor_laplace = conv_laplace(original_image_tensor)
torchvision.utils.save_image(tensor_laplace, 'laplace.png')

tensor_blur = conv_blur(original_image_tensor)
torchvision.utils.save_image(tensor_blur, 'blur.png')

tensor_sharp = conv_sharp(original_image_tensor)
torchvision.utils.save_image(tensor_sharp, 'sharp.png')


相关文章
|
15天前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
7天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
16天前
|
网络协议 Go
Go语言网络编程的实例
【10月更文挑战第27天】Go语言网络编程的实例
17 7
|
18天前
|
机器学习/深度学习 监控 自动驾驶
卷积神经网络有什么应用场景
【10月更文挑战第23天】卷积神经网络有什么应用场景
18 2
|
18天前
|
机器学习/深度学习 自然语言处理 算法
什么是卷积神经网络
【10月更文挑战第23天】什么是卷积神经网络
24 1
|
8天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
23 0
|
11天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。
|
17天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第26天】在这篇文章中,我们将深入探讨卷积神经网络(CNN)的基本原理、结构和应用。CNN是深度学习领域的一个重要分支,广泛应用于图像识别、语音处理等领域。我们将通过代码示例和实际应用案例,帮助读者更好地理解CNN的概念和应用。
|
19天前
|
机器学习/深度学习 算法 计算机视觉
深度学习与生活:如何利用卷积神经网络识别日常物品
【10月更文挑战第24天】在这篇文章中,我们将探索深度学习如何从理论走向实践,特别是卷积神经网络(CNN)在图像识别中的应用。通过一个简单的示例,我们将了解如何使用CNN来识别日常生活中的物体,如水果和家具。这不仅是对深度学习概念的一次直观体验,也是对技术如何融入日常生活的一次深刻反思。文章将引导读者思考技术背后的哲理,以及它如何影响我们的生活和思维方式。

热门文章

最新文章