Pytorch构建网络模型时super(__class__, self).__init__()的作用

简介: Pytorch构建网络模型时super(__class__, self).__init__()的作用

0 前言

按照国际惯例,首先声明:本文只是我自己学习的理解,虽然参考了他人的宝贵见解,但是内容不乏不准确的地方,希望批评指正,共同进步。

在使用Pytorch框架定义神经元网络模型的类的时候,首先都会在模型的类__init__()方法下加一行super(__class__, self).__init__()。例如:

class ClassName(torch.nn.Module):
    def __init__(self):
        super(ClassName, self).__init__()

对于所有的教程,这行代码几乎成为一个“潜规则”,虽然对于其作用并不太理解,久而久之也就默认了必须要加上这一行。


因此单独写一篇文章说明其作用,也深入自己的理解。


1 super()方法的说明

所有的Python初级教程,在介绍面向对象编程——类的时候都会提及super()方法,说明其作用是用于类的继承,但缺乏更深入的说明&理解。为了深入理解super()方法的运作原理,首先看下以下代码:


class A():
 
    def __init__(self):
        self.ten = 10
 
    def hello(self):
        return 'hello world'
 
 
class B(A):
 
    def __init__(self,x):
        # super(B, self).__init__()
        self.x = x
 
    def multi_ten(self):
        return self.x * self.ten
 
b = B(8)
 
print(b.hello())
print(b.multi_ten())
-------------------------------------------------
C:\Users\Lenovo\Desktop\DL\Pytest\Scripts\python.exe C:/Users/Lenovo/Desktop/DL/Pytest/test_main.py
hello world
Traceback (most recent call last):
  File "C:\Users\Lenovo\Desktop\DL\Pytest\test_main.py", line 23, in <module>
    print(b.multi_ten())
  File "C:\Users\Lenovo\Desktop\DL\Pytest\test_main.py", line 18, in multi_ten
    return self.x * self.ten
AttributeError: 'B' object has no attribute 'ten'
 
Process finished with exit code 1


如果去掉super(B, self).__init__()可以发现hello()方法还是可以运行的,也就是说:在类的继承时,super()方法并不是必须的


那什么时候必须用super()方法呢?在涉及自动运行的魔术方法时。例如上面的multi_ten()方法,其想要引用父类A方法__init__()中的self.ten,这时就必须在B类中使用super()方法,注明B类要继承A类中的__init__()方法。否则就会像上段代码一样报错并提示:B类中没有ten这个属性!(没有继承到)


魔术方法:Python内部定义,在类的实例化时自动运行的方法。这些方法的命名规则为 __xxxx__(),例如:__init__()。

另外,还有一个细节是super()方法中,括号内的内容是可以不用写的,这点可以用F4查看super()方法的定义,里面有段注释:


"super() -> same as super(__class__, <first argument>)"


__class__为当前的类名,<first argument>为self。


我个人使用的Python interpreter是Python 3.9,或许在更早版本的Python中,super()方法中是必须要填参数的,所以早期的教程都会写成super(__class__, self).__init__(),但是以后我们都不需要了。

2 从torch.nn.Module继承了什么?

再从一段最简单的线性神经元网络模型代码入手:

import torch
 
a = torch.tensor([1,2,3,4,5], dtype = torch.float32)
 
class test(torch.nn.Module):
    def __init__(self):
        # super().__init__()
        self.lin = torch.nn.Linear(5,2)
 
    def forward(self,x):
        return self.lin(x)
 
TEST = test()
 
print(TEST(a))


如果这里仍去掉super()方法,则会报错:


AttributeError: cannot assign module before Module.__init__() call


不出所料,是父类torch.nn.Module中的魔术方法__init__()没有继承(调用)到。


那它究竟定义了什么?

也可以通过F4,找到torch.nn.Module.__init__()的源码:


class Module:
 
...
 
    def __init__(self) -> None:
        """
        Initializes internal Module state, shared by both nn.Module and ScriptModule.
        """
        torch._C._log_api_usage_once("python.nn_module")
 
        """
        Calls super().__setattr__('a', a) instead of the typical self.a = a
        to avoid Module.__setattr__ overhead. Module's __setattr__ has special
        handling for parameters, submodules, and buffers but simply calls into
        super().__setattr__ for all other attributes.
        """
        super().__setattr__('training', True)
        super().__setattr__('_parameters', OrderedDict())
        super().__setattr__('_buffers', OrderedDict())
        super().__setattr__('_non_persistent_buffers_set', set())
        super().__setattr__('_backward_hooks', OrderedDict())
        super().__setattr__('_is_full_backward_hook', None)
        super().__setattr__('_forward_hooks', OrderedDict())
        super().__setattr__('_forward_pre_hooks', OrderedDict())
        super().__setattr__('_state_dict_hooks', OrderedDict())
        super().__setattr__('_load_state_dict_pre_hooks', OrderedDict())
        super().__setattr__('_load_state_dict_post_hooks', OrderedDict())
        super().__setattr__('_modules', OrderedDict())
 
    forward: Callable[..., Any] = _forward_unimplemented

这里已经说明,torch.nn.Module.__init__()的作用是Initializes internal Module state(初始化内部模型状态)。具体地,就是初始化training,parameters..._modules这些在Pytorch中内部使用的属性。


其中,super().__setattr__()为调用torch.nn.Module的父类Object的__setattr__()方法,其作用就类似于“赋值”,例如:super().__setattr__('_parameters', OrderedDict()) 的作用就类似 self._parameters = OrderedDict()。那为什么不直接用赋值?这里也解释了: Calls super().__setattr__('a', a) instead of the typical self.a = a to avoid Module.__setattr__ overhead. Module's __setattr__ has special handling for parameters, submodules, and buffers but simply calls into super().__setattr__ for all other attributes. 可以理解为__setattr__相比于简单赋值有着更多的作用。


所以,在Pytorch框架下,所有的神经元网络模型子类,都必须要继承这些内部属性的初始化过程。


相关文章
|
1月前
|
存储 监控 安全
单位网络监控软件:Java 技术驱动的高效网络监管体系构建
在数字化办公时代,构建基于Java技术的单位网络监控软件至关重要。该软件能精准监管单位网络活动,保障信息安全,提升工作效率。通过网络流量监测、访问控制及连接状态监控等模块,实现高效网络监管,确保网络稳定、安全、高效运行。
62 11
|
15天前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
66 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
16天前
|
运维 监控 Cloud Native
构建深度可观测、可集成的网络智能运维平台
本文介绍了构建深度可观测、可集成的网络智能运维平台(简称NIS),旨在解决云上网络运维面临的复杂挑战。内容涵盖云网络运维的三大难题、打造云原生AIOps工具集的解决思路、可观测性对业务稳定的重要性,以及产品发布的亮点,包括流量分析NPM、网络架构巡检和自动化运维OpenAPI,助力客户实现自助运维与优化。
|
16天前
|
人工智能 大数据 网络性能优化
构建超大带宽、超高性能及稳定可观测的全球互联网络
本次课程聚焦构建超大带宽、超高性能及稳定可观测的全球互联网络。首先介绍全球互联网络的功能与应用场景,涵盖云企业网、转发路由器等产品。接着探讨AI时代下全球互联网络面临的挑战,如大规模带宽需求、超低时延、极致稳定性和全面可观测性,并分享相应的解决方案,包括升级转发路由器、基于时延的流量调度和增强网络稳定性。最后宣布降价措施,降低数据与算力连接成本,助力企业全球化发展。
|
27天前
|
数据采集 机器学习/深度学习 人工智能
基于AI的网络流量分析:构建智能化运维体系
基于AI的网络流量分析:构建智能化运维体系
112 13
|
1月前
|
机器学习/深度学习 人工智能 PyTorch
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
本文探讨了Transformer模型中变长输入序列的优化策略,旨在解决深度学习中常见的计算效率问题。文章首先介绍了批处理变长输入的技术挑战,特别是填充方法导致的资源浪费。随后,提出了多种优化技术,包括动态填充、PyTorch NestedTensors、FlashAttention2和XFormers的memory_efficient_attention。这些技术通过减少冗余计算、优化内存管理和改进计算模式,显著提升了模型的性能。实验结果显示,使用FlashAttention2和无填充策略的组合可以将步骤时间减少至323毫秒,相比未优化版本提升了约2.5倍。
71 3
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
|
1月前
|
机器学习/深度学习 算法 PyTorch
基于Pytorch Gemotric在昇腾上实现GraphSage图神经网络
本文详细介绍了如何在昇腾平台上使用PyTorch实现GraphSage算法,在CiteSeer数据集上进行图神经网络的分类训练。内容涵盖GraphSage的创新点、算法原理、网络架构及实战代码分析,通过采样和聚合方法高效处理大规模图数据。实验结果显示,模型在CiteSeer数据集上的分类准确率达到66.5%。
|
1月前
|
云安全 人工智能 安全
|
1月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
88 3
|
2月前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。