机器视觉-边缘检测与图像分割原理

简介: 机器视觉-边缘检测与图像分割原理
边缘检测
  • 对于二维图像,边缘一般在一阶微分的绝对值最大处,或者说二阶微分为0处,即:

image.png

边缘发生在颜色突变的地方,因此是颜色梯度绝对值最大处。

  • 存储于计算机内的二维图像本质是一个二维矩阵(对于彩色图片是RGB三个二维矩阵),可以通过卷积算子计算并进行边缘检测。

构建边缘检测算子思路:让该算子内所有数值求和为0。这样就可以在非边缘处(像素值变化不大的区域)与边缘算子求卷积后基本为0;在边缘处(像素值变化很大的区域)与边缘检测算子求卷积后得到一个绝对值较大的值。

  • 常见的边缘检测算子
    ①Robert算子
    image.png

    image.png

②Prewitt算子

image.png

image.png

③Sobel算子

image.png

image.png

④Laplace算子

image.png

图像分割

基于阈值的分割方法

通过设定不同的特征阈值,把图像像素点分为占据不同灰度级范围的图。这种方法的关键点是预先确定好特征阈值。

基于区域的分割方法

有两种方法:一种是区域生长,从单个像素出发,逐步合并以形成所需要的分割区域;另一种是区域分裂合并,从全局出发,逐步切割至所需的分割区域。

基于边缘检测的分割方法

使用上述边缘检测算子识别边缘进行分割。存在两个问题:1、不能保证边缘的连续性和封闭性;2、在高细节区存在大量的碎片边缘。


相关文章
|
8月前
|
机器学习/深度学习 算法 测试技术
低照度增强算法(图像增强+目标检测+代码)
低照度增强算法(图像增强+目标检测+代码)
|
算法 数据挖掘 计算机视觉
【目标检测】基于稀疏表示的高光谱图像(Matlab代码实现)
【目标检测】基于稀疏表示的高光谱图像(Matlab代码实现)
199 0
|
8月前
|
机器学习/深度学习 并行计算 算法
yolov5旋转目标检测-遥感图像检测-无人机旋转目标检测-附代码和原理
yolov5旋转目标检测-遥感图像检测-无人机旋转目标检测-附代码和原理
|
机器学习/深度学习 编解码 决策智能
计算机视觉实战(七)图像金字塔与轮廓检测
计算机视觉实战(七)图像金字塔与轮廓检测
159 0
计算机视觉实战(七)图像金字塔与轮廓检测
|
机器学习/深度学习 决策智能 计算机视觉
计算机视觉实战(四)图像形态学操作
计算机视觉实战(四)图像形态学操作
112 0
|
机器学习/深度学习 算法 决策智能
计算机视觉实战(六)边缘检测
计算机视觉实战(六)边缘检测
137 0
|
算法 计算机视觉 Python
计算机视觉实验:边缘提取与特征检测
计算机视觉实验:边缘提取与特征检测
146 0
|
机器学习/深度学习 传感器 算法
【图像检测】基于CNN深度学习实现图像视网膜病变检测附matlab代码
【图像检测】基于CNN深度学习实现图像视网膜病变检测附matlab代码
|
机器学习/深度学习 传感器 SQL
领域最全 | 计算机视觉算法在路面坑洼检测中的应用综述(基于2D图像/3D LiDAR/深度学习)(下)
本文首先介绍了用于2D和3D道路数据采集的传感系统,包括摄像机、激光扫描仪和微软Kinect。随后,对 SoTA 计算机视觉算法进行了全面深入的综述,包括: (1)经典的2D图像处理,(2)3D点云建模与分割,(3)机器/深度学习。本文还讨论了基于计算机视觉的路面坑洼检测方法目前面临的挑战和未来的发展趋势: 经典的基于2D图像处理和基于3D点云建模和分割的方法已经成为历史; 卷积神经网络(CNN)已经展示了引人注目的路面坑洼检测结果,并有望在未来的进展中打破瓶颈的自/无监督学习多模态语义分割。作者相信本研究可为下一代道路状况评估系统的发展提供实用的指导。
领域最全 | 计算机视觉算法在路面坑洼检测中的应用综述(基于2D图像/3D LiDAR/深度学习)(下)
|
机器学习/深度学习 传感器 数据采集
领域最全 | 计算机视觉算法在路面坑洼检测中的应用综述(基于2D图像/3D LiDAR/深度学习)(上)
本文首先介绍了用于2D和3D道路数据采集的传感系统,包括摄像机、激光扫描仪和微软Kinect。随后,对 SoTA 计算机视觉算法进行了全面深入的综述,包括: (1)经典的2D图像处理,(2)3D点云建模与分割,(3)机器/深度学习。本文还讨论了基于计算机视觉的路面坑洼检测方法目前面临的挑战和未来的发展趋势: 经典的基于2D图像处理和基于3D点云建模和分割的方法已经成为历史; 卷积神经网络(CNN)已经展示了引人注目的路面坑洼检测结果,并有望在未来的进展中打破瓶颈的自/无监督学习多模态语义分割。作者相信本研究可为下一代道路状况评估系统的发展提供实用的指导。
领域最全 | 计算机视觉算法在路面坑洼检测中的应用综述(基于2D图像/3D LiDAR/深度学习)(上)

热门文章

最新文章