PolarDB +AnalyticDB Zero-ETL :免费同步数据到ADB,享受数据流通新体验

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
简介: Zero-ETL是阿里云瑶池数据库提供的服务,旨在简化传统ETL流程的复杂性和成本,提高数据实时性。降低数据同步成本,允许用户快速在AnalyticDB中对PolarDB数据进行分析,降低了30%的数据接入成本,提升了60%的建仓效率。Zero-ETL特性包括免费的PolarDB MySQL联邦分析和PolarDB-X元数据自动同步,提供一体化的事务处理和数据分析,并能整合多个数据源。用户只需简单配置即可实现数据同步和实时分析。

什么是Zero-ETL

  • ETL 是将上层业务系统的数据经过提取(Extract)、转换清洗(Transform)、加载(Load)到数据仓库的处理过程,目的是将上游分散的数据整合到目标端数仓,通过在数仓中做进一步的计算分析,来为业务做有效的商业决策。

   开发传统的ETL流程,具备以下挑战:

  1. 资源成本增加:不同的数据源可能需要不同的ETL工具,搭建ETL链路会产生额外的资源成本
  2. 系统复杂度增加:用户需要自行维护ETL工具,增加了运维难度,无法专注于业务应用的开发
  3. 数据实时性降低:部分ETL流程涉及周期性的批量更新,在近实时的应用场景中,无法做到快速产出分析结果。

    Zero-ETL是旨在为用户减少不同数据源间人工迁移或同步的工作量,降低ETL的成本和复杂度,让用户不需要开发和关注ETL流程,专注于上层的应用开发和数据分析。

阿里云瑶池数据库提供的Zero-ETL服务

Zero-ETL优势

阿里云瑶池数据库Zero-ETL旨在实现事务处理和数据分析一体化,实现建仓成本的降低,建仓效率的提升。

目前使用Zero-ETL方案,数据接入成本可下降30%,构建数据仓库的效率可提升60%

总结来看,Zero-ETL的优势如下:

零成本:提供低成本的数据接入链路,用户可免费或极低成本实现在AnalyticDB中对上游PolarDB数据进行分析

易用性好:无需创建和维护执行ETL(提取、转换、加载操作)的复杂数据管道,仅需选择源端数据和目标端实例,自动创建实时数据同步链路,减少构建和管理数据管道所带来的挑战,专注上层应用开发

多源汇集:Zero-ETL的目标端可以提供全局视角,将多个数据源实例汇集到目标端进行复杂分析、关联查询等

阿里云云原生数据仓库AnalyticDB MySQL基于湖仓一体架构打造,高度兼容MySQL,毫秒级更新,亚秒级查询,可以同时提供高吞吐离线处理和高性能在线分析。

针对在AnalyticDB MySQL中分析PolarDB的数据,我们提供以下两种Zero-ETL功能。

  • 联邦分析:通过该功能可以免费PolarDB MySQL的数据实时同步到AnalyticDB MySQL中,只需要简单配置源端和目标端,便可完成同步任务的构建,用户无需额外再维护其他的数据同步链路;数据进入AnalyticDB MySQL后可以直接用ADB SparkXIHE计算引擎进行查询和分析

image.png

  • 元数据自动同步:通过该功能,用户在PolarDB-X中开启列存表后,可以自动将列存表的元数据同步到AnalyticDB MySQL中,立即在ADB中分析PolarDB-X中的数据,并可将PolarDB-X中的表和其他数据源的表进行关联查询分析。


image.png

如何使用阿里云瑶池数据库Zero-ETL服务

PolarDB MySQL联邦分析

PolarDB MySQL概览页-「联邦分析」进入该功能

  • 新建联邦分析链路:选择源端实例和目标端实例,默认同步整实例,打开「高级配置」后可以选择库表对象,也可以对大表进行分区键设置。

image.png

image.png

  • 编辑链路、查看链路:支持修改库表对象等,支持查看联邦分析任务的配置详情

image.png

PolarDB-X 元数据自动发现

PolarDB-X 2.0控制台-「列存引擎」页面进入该功能

  • 「列存引擎」页面,创建列存引擎,并「开通ADB湖仓」,此处可选择同地域下的已有实例

image.png

image.png

  • 完成开通,在目标端AnalyticDB MySQL实例中-「数据接入」-「元数据发现」中会自动创建元数据同步任务;并可通过「SQL开发」、DMS或其他客户端工具,在实例中对源端PolarDB-X列存表进行查询分析。

image.png

Zero-ETL优势

阿里云瑶池数据库Zero-ETL旨在实现事务处理和数据分析一体化,实现建仓成本的降低,建仓效率的提升。

目前使用Zero-ETL方案和传统的数据同步链路方案对比来看,链路成本可下降30%,构建数据仓库的效率可提升60%

总结来看,Zero-ETL的优势如下:

零成本:提供低成本的数据接入链路,用户可免费或极低成本实现在AnalyticDB中对上游PolarDB数据进行分析

易用性好:无需创建和维护执行ETL(提取、转换、加载操作)的复杂数据管道,仅需选择源端数据和目标端实例,自动创建实时数据同步链路,减少构建和管理数据管道所带来的挑战,专注上层应用开发

多源汇集:Zero-ETL的目标端可以提供全局视角,将多个数据源实例汇集到目标端进行复杂分析、关联查询等

点击了解更多Zero-ETL功能

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
6月前
|
关系型数据库 MySQL Apache
**ADB MySQL湖仓版能够平滑迁移到湖仓**,阿里云提供了相应的迁移工具和服务来简化这一过程。
**ADB MySQL湖仓版能够平滑迁移到湖仓**,阿里云提供了相应的迁移工具和服务来简化这一过程。
333 2
|
6月前
|
Cloud Native 关系型数据库 MySQL
云原生数据仓库产品使用合集之ADB MySQL湖仓版和 StarRocks 的使用场景区别,或者 ADB 对比 StarRocks 的优劣势
阿里云AnalyticDB提供了全面的数据导入、查询分析、数据管理、运维监控等功能,并通过扩展功能支持与AI平台集成、跨地域复制与联邦查询等高级应用场景,为企业构建实时、高效、可扩展的数据仓库解决方案。以下是对AnalyticDB产品使用合集的概述,包括数据导入、查询分析、数据管理、运维监控、扩展功能等方面。
|
6月前
|
Cloud Native 关系型数据库 MySQL
云原生数据仓库产品使用合集之如何使用ADB MySQL湖仓版声纹特征提取服务
阿里云AnalyticDB提供了全面的数据导入、查询分析、数据管理、运维监控等功能,并通过扩展功能支持与AI平台集成、跨地域复制与联邦查询等高级应用场景,为企业构建实时、高效、可扩展的数据仓库解决方案。以下是对AnalyticDB产品使用合集的概述,包括数据导入、查询分析、数据管理、运维监控、扩展功能等方面。
|
6月前
|
运维 Cloud Native 关系型数据库
云原生数据仓库产品使用合集之原生数据仓库AnalyticDB PostgreSQL版如果是列存表的话, adb支持通过根据某个字段做upsert吗
阿里云AnalyticDB提供了全面的数据导入、查询分析、数据管理、运维监控等功能,并通过扩展功能支持与AI平台集成、跨地域复制与联邦查询等高级应用场景,为企业构建实时、高效、可扩展的数据仓库解决方案。以下是对AnalyticDB产品使用合集的概述,包括数据导入、查询分析、数据管理、运维监控、扩展功能等方面。
|
3月前
|
监控 Cloud Native 关系型数据库
【跨区域PolarDB-MySQL主备互通】:揭秘如何跨越万里实现数据无缝同步,打造坚不可摧的灾备体系!
【8月更文挑战第20天】阿里云PolarDB是一款兼容MySQL协议的云原生数据库服务,提供高性能与高可用性。本文介绍如何在PolarDB-MySQL中实现跨区域主备同步。首先创建主备两个集群,接着通过MySQL复制功能配置同步:获取主节点复制信息、配置备节点复制并启动复制进程。最后,通过`SHOW SLAVE STATUS\G;`监控复制状态,确保数据同步正常。此方法可提升数据的可靠性和可用性,需考虑网络条件对性能的影响。
87 0
|
5月前
|
Cloud Native 关系型数据库 MySQL
云原生数据仓库AnalyticDB产品使用合集之如何修改云ADB MySQL版的默认LIMIT
阿里云AnalyticDB提供了全面的数据导入、查询分析、数据管理、运维监控等功能,并通过扩展功能支持与AI平台集成、跨地域复制与联邦查询等高级应用场景,为企业构建实时、高效、可扩展的数据仓库解决方案。以下是对AnalyticDB产品使用合集的概述,包括数据导入、查询分析、数据管理、运维监控、扩展功能等方面。
91 21
|
5月前
|
消息中间件 关系型数据库 分布式数据库
PolarDB产品使用问题之rockermq后增加一个broker节点,topic该如何同步
PolarDB产品使用合集涵盖了从创建与管理、数据管理、性能优化与诊断、安全与合规到生态与集成、运维与支持等全方位的功能和服务,旨在帮助企业轻松构建高可用、高性能且易于管理的数据库环境,满足不同业务场景的需求。用户可以通过阿里云控制台、API、SDK等方式便捷地使用这些功能,实现数据库的高效运维与持续优化。
|
5月前
|
分布式计算 DataWorks 关系型数据库
DataWorks操作报错合集之离线同步任务中,把表数据同步到POLARDB,显示所有数据都是脏数据,报错信息:ERROR JobContainer - 运行scheduler 模式[local]出错.是什么原因
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
|
5月前
|
关系型数据库 MySQL 分布式数据库
PolarDB操作报错合集之当使用DTS(数据传输服务)同步的表在目标库中进行LEFT JOIN查询时遇到异常,是什么导致的
在使用阿里云的PolarDB(包括PolarDB-X)时,用户可能会遇到各种操作报错。下面汇总了一些常见的报错情况及其可能的原因和解决办法:1.安装PolarDB-X报错、2.PolarDB安装后无法连接、3.PolarDB-X 使用rpm安装启动卡顿、4.PolarDB执行UPDATE/INSERT报错、5.DDL操作提示“Lock conflict”、6.数据集成时联通PolarDB报错、7.编译DN报错(RockyLinux)、8.CheckStorage报错(源数据库实例被删除)、9.嵌套事务错误(TDDL-4604)。
|
5月前
|
关系型数据库 分布式数据库 数据库
PolarDB产品使用问题之在从RDS同步完成后,是否会自动处于只读状态
PolarDB产品使用合集涵盖了从创建与管理、数据管理、性能优化与诊断、安全与合规到生态与集成、运维与支持等全方位的功能和服务,旨在帮助企业轻松构建高可用、高性能且易于管理的数据库环境,满足不同业务场景的需求。用户可以通过阿里云控制台、API、SDK等方式便捷地使用这些功能,实现数据库的高效运维与持续优化。

相关产品

  • 云原生数据库 PolarDB