LangChain Agent:赋予 LLM 行动力的神秘力量

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: LangChain Agent 是什么?有什么用?基本原理是什么?那么多 Agent 类型在实际开发中又该如何选择?

image

LangChain Agent 是什么?有什么用?基本原理是什么?

那么多 Agent 类型在实际开发中又该如何选择?

如果以上有你想知道的答案,那么请往下看

那么如果没有呢?看看嘛,反正又不吃亏 (~ ̄▽ ̄)~

What & Why

丹尼尔:蛋兄,我又来了。今天主要想跟你深入了解下 LangChain 中的 Agent

蛋先生:Agent,知道中文是什么意思吗?

丹尼尔:这可难不倒我,我可是过了英文 8 (′▽`〃)... 4 级的男人。不就是代理的意思嘛

蛋先生:哈哈,你还挺自信的嘛。没错,Agent 就是代理。代理啥意思呢?小明代理小红去办理事务,就是小明因某些原因没法做这件事,需要小红出面去做这件事

丹尼尔:蛋兄,恕小弟我愚昧,还请更通俗易懂地展开说说

蛋先生:你知道大脑和身体的关系吗?

丹尼尔:大脑会思考,而身体会根据大脑的指令行动,比如拿东西,走路等。

蛋先生:说得没错。大脑本身缺乏行动能力,所以需要有身体来实现它的意图,这里可以把身体看成是大脑的代理

丹尼尔:这我明白,所以 Agent 就是 ...

蛋先生:LLM 拥有强大的推理能力,就像我们的大脑。Agent 嘛,当然就像我们的身体。通过 Agent,就可以让 LLM 走起来。(⚆_⚆) 哦不,就可以让 LLM 拥有推理能力之外的其它能力

丹尼尔:概念上是理解了,这个推理能力之外的其它能力都有哪些呢,能举一个例子让我更加清晰吗?

蛋先生:你可以试下直接询问 LLM 当前时间,你觉得它回答得了吗?

丹尼尔:哦,这肯定不行,就算能回答也是胡说八道

蛋先生:恩,LLM 的知识受限于训练数据,实时信息是它的软肋。但有了 Agent,这个问题就难不倒它了

How

Agent 的基本原理

丹尼尔:哇哦,Agent 拥有让 LLM “走”起来的神奇力量,我对它是如何实现的好奇不已!

蛋先生:老规矩,先来瞧瞧一段代码示例

import os
from langchain import hub
from langchain.agents import create_structured_chat_agent
from langchain.agents import AgentExecutor
from datetime import datetime
from langchain.tools import tool
from langchain_community.chat_models.fireworks import ChatFireworks

@tool
def get_current_time() -> str:
    """Get the current time."""
    return str(datetime.now().strftime("%Y年%m月%d日 %H时%M分"))


os.environ["FIREWORKS_API_KEY"] = '<FIREWORKS_API_KEY>'
fw_chat = ChatFireworks(model="accounts/fireworks/models/llama-v2-70b-chat")
tools = [get_current_time]
prompt = hub.pull("hwchase17/structured-chat-agent")

agent = create_structured_chat_agent(fw_chat, tools, prompt)

agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
agent_executor.invoke({
   
   "input": "What's the date today?"})

丹尼尔:每个单词我都懂,毕竟我是过了英语 4 级的男人。但...你还是赶紧解释一下吧!

蛋先生:代码嘛,我就不多解释了。我只想通过简单地拆解下上面代码的内部工作流程,从而介绍 Agent 是如何运作的

第一步,Agent 将用户的问题直接扔给 LLM

image

第二步,LLM 推理出可以使用 get_current_time 这个小工具来回答这个问题,于是它用 JSON 的形式告诉 Agent 去执行这个工具。

image

第三步,Agent 将 get_current_time 工具的执行结果呈现给 LLM

image

最后一步,LLM 把工具的输出内容进行总结,然后把答案扔给 Agent。Agent 把这个答案呈现给用户,大功告成!

image

这是一个最简单的流程。然而,当面临更复杂的问题时,LLM 会将问题分解为若干子问题,然后通过不断循环第二步和第三步,逐个解决这些子问题,最后得到一个最终的答案。

丹尼尔:LLM 就是“大脑”,Agent 就是“身体”,Tool 就是“手脚”,这下完全理解了。那 LLM 的回答为何可以如此准确呢?

蛋先生:这可得感谢 Prompt 工程的功劳!

比如在 Prompt 中,会告诉 LLM 可以使用的小工具:

You have access to the following tools:

get_current_time: get_current_time() -> str - Get the current time.

Valid "action" values: "Final Answer" or get_current_time

还有比如在 Prompt 中,会告诉 LLM 用 JSON 格式返回:

Provide only ONE action per $JSON_BLOB, as shown:

{
  "action": $TOOL_NAME,
  "action_input": $INPUT
}

具体可以参考这个 Prompt 模板 【hwchase17/structured-chat-agent

丹尼尔:666

Agent 类型这么多,如何抉择?

丹尼尔:我瞅了瞅官网上的 Agent 类型,简直让我眼花缭乱。我这个选择困难症患者该如何选呢?

image

蛋先生:首先,我们来梳理一下 LLM 和 Chat Model 这两个 model type 的区别。在 LangChain 中,LLM 和 Chat Model 的本质区别在于输入输出。LLM 的输入输出都是字符串,而 Chat Model 的输入输出都是 Message 实例。

丹尼尔:然后呢?

蛋先生:如果你对 OpenAI 的 API 比较熟悉,可以把 LLM 当做 Completions,把 Chat Model 当做 Chat Completions。

  • Completions
    image

  • Chat Completions
    image

由于 Completions 已经被标记为 Legacy(不建议使用),所以在实际应用中,建议使用 Chat Model 类型的 Agent 就可以了。

丹尼尔:哦,抛开 LLM 类型,还有 OpenAI Tools / OpenAI Functions / Structured Chat / JSON Chat。那这些又该如何选择呢?

蛋先生:OpenAI functions 参数已经过时了,建议使用 tools 参数。So,可以把 OpenAI Functions 类型排除掉

image

丹尼尔:好的,还剩下 OpenAI Tools / Structured Chat / JSON Chat。

蛋先生:如果你使用的是 OpenAI 的语言模型(实际上只要 API 支持 tools 参数的大语言模型都可以用此类型),那就选择 OpenAI Tools 类型的;否则就选用 Structured Chat。

Structured Chat 与 JSON Chat 的区别

丹尼尔:那 JSON Chat 类型呢?为啥直接无视它了?

蛋先生:Structured Chat 和 JSON Chat 的区别在于对 tool 入参类型的支持上。

JSON Chat 只支持一个参数的 tool,比如以下工具:

@tool
def search(query: str) -> str:
    """Look up things online."""
    return "LangChain"

如果是多参数的 tool,那你就得升级成 Structured Chat,比如如下工具:

@tool
def multiply(a: int, b: int) -> int:
    """Multiply two numbers."""
    return a * b

丹尼尔:哦,看起来 Structured Chat 已经包含了 JSON Chat 的功能了呀。

蛋先生:没错,但如果你用的大语言模型比较糟糕,可能就需要用 JSON Chat。因为对于大语言模型来说,调用只有一个参数的 tool 会更简单一些。不过现在的大语言模型只会变得越来越厉害,所以 Structured Chat 就可以了。

丹尼尔:好咧,我已经迫不及待要去试试了!

蛋先生:那,后会有期

丹尼尔:谢谢蛋兄,后会有期

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
相关文章
|
3月前
|
前端开发 机器人 API
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
752 2
|
28天前
|
弹性计算 自然语言处理 数据库
通过阿里云Milvus和LangChain快速构建LLM问答系统
本文介绍如何通过整合阿里云Milvus、阿里云DashScope Embedding模型与阿里云PAI(EAS)模型服务,构建一个由LLM(大型语言模型)驱动的问题解答应用,并着重演示了如何搭建基于这些技术的RAG对话系统。
|
2月前
|
JSON 数据可视化 NoSQL
基于LLM Graph Transformer的知识图谱构建技术研究:LangChain框架下转换机制实践
本文介绍了LangChain的LLM Graph Transformer框架,探讨了文本到图谱转换的双模式实现机制。基于工具的模式利用结构化输出和函数调用,简化了提示工程并支持属性提取;基于提示的模式则为不支持工具调用的模型提供了备选方案。通过精确定义图谱模式(包括节点类型、关系类型及其约束),显著提升了提取结果的一致性和可靠性。LLM Graph Transformer为非结构化数据的结构化表示提供了可靠的技术方案,支持RAG应用和复杂查询处理。
173 2
基于LLM Graph Transformer的知识图谱构建技术研究:LangChain框架下转换机制实践
|
3月前
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
116 3
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
|
2月前
|
敏捷开发 机器学习/深度学习 数据采集
端到端优化所有能力,字节跳动提出强化学习LLM Agent框架AGILE
【10月更文挑战第23天】字节跳动研究团队提出AGILE框架,通过强化学习优化大型语言模型(LLM)在复杂对话任务中的表现。该框架将LLM作为核心决策模块,结合记忆、工具和专家咨询模块,实现智能体的自我进化。实验结果显示,AGILE智能体在ProductQA和MedMCQA数据集上优于GPT-4。
166 4
|
3月前
LangChain-15 Manage Prompt Size 管理上下文大小,用Agent的方式询问问题,并去百科检索内容,总结后返回
LangChain-15 Manage Prompt Size 管理上下文大小,用Agent的方式询问问题,并去百科检索内容,总结后返回
48 2
|
3月前
LangChain-24 Agengts 通过TavilySearch Agent实现检索内容并回答 AgentExecutor转换Search 借助Prompt Tools工具
LangChain-24 Agengts 通过TavilySearch Agent实现检索内容并回答 AgentExecutor转换Search 借助Prompt Tools工具
55 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
谷歌最新推出的Gemini 2.0是一款原生多模态输入输出的AI模型,以Agent技术为核心,支持多种数据类型的输入与输出,具备强大的性能和多语言音频输出能力。本文将详细介绍Gemini 2.0的主要功能、技术原理及其在多个领域的应用场景。
160 20
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
|
1月前
|
人工智能 API 语音技术
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
TEN Agent 是一个开源的实时多模态 AI 代理框架,集成了 OpenAI Realtime API 和 RTC 技术,支持语音、文本和图像的多模态交互,具备实时通信、模块化设计和多语言支持等功能,适用于智能客服、实时语音助手等多种场景。
155 15
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
|
1月前
|
人工智能 自然语言处理 前端开发
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
Director 是一个构建视频智能体的 AI 框架,用户可以通过自然语言命令执行复杂的视频任务,如搜索、编辑、合成和生成视频内容。该框架基于 VideoDB 的“视频即数据”基础设施,集成了多个预构建的视频代理和 AI API,支持高度定制化,适用于开发者和创作者。
96 9
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务