【Java】一只小菜坤的编程题之旅【4】

简介: 【Java】一只小菜坤的编程题之旅【4】

1丶合并两个有序链表

小菜坤的答案:

class Solution {
    public ListNode mergeTwoLists(ListNode list1, ListNode list2) {
        ListNode newHead=new ListNode(0);
        ListNode tmp=newHead;
        while(list1!=null && list2!=null){
            if(list1.val<list2.val){
                tmp.next=list1;
                list1=list1.next;
                tmp=tmp.next;
            }else{
                tmp.next=list2;
                list2=list2.next;
                tmp=tmp.next;
            }
            
        }
        
        if(list1!=null){
            tmp.next=list1;
        }
        if(list2!=null){
            tmp.next=list2;
        }
        return newHead.next;
    }
}

2丶栈的压入、弹出序列

import java.util.*;
public class Solution {
    /**
     * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
     *
     * 
     * @param pushV int整型一维数组 
     * @param popV int整型一维数组 
     * @return bool布尔型
     */
    public boolean IsPopOrder (int[] pushA, int[] popA) {
        if(pushA.length==0||popA.length==0){
            return false;
        }
        Stack<Integer> stack=new Stack<>();
        int j=0;
        for(int i=0;i<pushA.length;i++){
            stack.push(pushA[i]);
            while (j<popA.length&&!stack.empty()&&stack.peek()==popA[j]){
                stack.pop();
                j++;
            }
        }
        return  stack.empty();
    }
}

3丶设计循环队列

class MyCircularQueue {
    public  int[] elem;
    public  int front;//队头下标
    public  int rear;//队尾下标
    public MyCircularQueue(int k) {
        this.elem=new  int[k+1];
    }
    //入队
    public boolean enQueue(int value) {
        if(isFull()){
            return  false;
        }
        this.elem[rear]=value;
        rear=(rear+1) % elem.length;
        return  true;
    }
    //出队
    public boolean deQueue() {
        if (isEmpty()){
            return  false;
        }
        front=(front+1)%elem.length;
        return  true;
    }
    //获取队头元素
    public int Front() {
        if (isEmpty()){
            return  -1;
        }
        return  elem[front];
    }
    //获取队尾元素
    public int Rear() {
        if (isEmpty()){
            return  -1;
        }
        int index=(rear==0)?elem.length-1:rear-1;
        return  elem[index];
    }
    
    public boolean isEmpty() {
        return  rear==front;
    }
    public boolean isFull() {
        return (rear+1) % elem.length==front;
    }
}
/**
 * Your MyCircularQueue object will be instantiated and called as such:
 * MyCircularQueue obj = new MyCircularQueue(k);
 * boolean param_1 = obj.enQueue(value);
 * boolean param_2 = obj.deQueue();
 * int param_3 = obj.Front();
 * int param_4 = obj.Rear();
 * boolean param_5 = obj.isEmpty();
 * boolean param_6 = obj.isFull();
 */

4丶最小栈

import java.util.Stack;
class MinStack {
    private Stack<Integer> s;  //普通栈
    private Stack<Integer> minStack;//维护当前栈的最小值
    public MinStack() {
        s =new Stack<>();
        minStack=new Stack<>();
    }
    /*
    入栈
     */
    public void push(int val) {
        s.push(val);
        if(minStack.empty()){
            minStack.push(val);
        }else{
            int peekV=minStack.peek();
            if(val<=peekV){
                minStack.push(val);
            }
        }
    }
    /*
    出栈
     */
    public void pop() {
        if(!s.empty()){
            int popV=s.pop();
            int peekVMins=minStack.peek();
            if(popV==peekVMins){
                minStack.pop();
            }
        }
    }
    /*
    获取栈顶元素,但是不删除
     */
    public int top() {
        if(!s.empty()){
            return  s.peek();
        }
        return  -1;
    }
    //获取最小栈的栈顶元素
    public int getMin() {
        if(!minStack.empty()){
            return minStack.peek();
        }
        return  -1;
    }
}
/**
 * Your MinStack object will be instantiated and called as such:
 * MinStack obj = new MinStack();
 * obj.push(val);
 * obj.pop();
 * int param_3 = obj.top();
 * int param_4 = obj.getMin();
 */


目录
相关文章
|
1月前
|
Java 程序员
Java编程中的异常处理:从基础到高级
在Java的世界中,异常处理是代码健壮性的守护神。本文将带你从异常的基本概念出发,逐步深入到高级用法,探索如何优雅地处理程序中的错误和异常情况。通过实际案例,我们将一起学习如何编写更可靠、更易于维护的Java代码。准备好了吗?让我们一起踏上这段旅程,解锁Java异常处理的秘密!
|
13天前
|
存储 缓存 Java
Java 并发编程——volatile 关键字解析
本文介绍了Java线程中的`volatile`关键字及其与`synchronized`锁的区别。`volatile`保证了变量的可见性和一定的有序性,但不能保证原子性。它通过内存屏障实现,避免指令重排序,确保线程间数据一致。相比`synchronized`,`volatile`性能更优,适用于简单状态标记和某些特定场景,如单例模式中的双重检查锁定。文中还解释了Java内存模型的基本概念,包括主内存、工作内存及并发编程中的原子性、可见性和有序性。
Java 并发编程——volatile 关键字解析
|
17天前
|
算法 Java 调度
java并发编程中Monitor里的waitSet和EntryList都是做什么的
在Java并发编程中,Monitor内部包含两个重要队列:等待集(Wait Set)和入口列表(Entry List)。Wait Set用于线程的条件等待和协作,线程调用`wait()`后进入此集合,通过`notify()`或`notifyAll()`唤醒。Entry List则管理锁的竞争,未能获取锁的线程在此排队,等待锁释放后重新竞争。理解两者区别有助于设计高效的多线程程序。 - **Wait Set**:线程调用`wait()`后进入,等待条件满足被唤醒,需重新竞争锁。 - **Entry List**:多个线程竞争锁时,未获锁的线程在此排队,等待锁释放后获取锁继续执行。
50 12
|
13天前
|
存储 安全 Java
Java多线程编程秘籍:各种方案一网打尽,不要错过!
Java 中实现多线程的方式主要有四种:继承 Thread 类、实现 Runnable 接口、实现 Callable 接口和使用线程池。每种方式各有优缺点,适用于不同的场景。继承 Thread 类最简单,实现 Runnable 接口更灵活,Callable 接口支持返回结果,线程池则便于管理和复用线程。实际应用中可根据需求选择合适的方式。此外,还介绍了多线程相关的常见面试问题及答案,涵盖线程概念、线程安全、线程池等知识点。
93 2
|
2月前
|
设计模式 Java 开发者
Java多线程编程的陷阱与解决方案####
本文深入探讨了Java多线程编程中常见的问题及其解决策略。通过分析竞态条件、死锁、活锁等典型场景,并结合代码示例和实用技巧,帮助开发者有效避免这些陷阱,提升并发程序的稳定性和性能。 ####
|
2月前
|
缓存 Java 开发者
Java多线程编程的陷阱与最佳实践####
本文深入探讨了Java多线程编程中常见的陷阱,如竞态条件、死锁和内存一致性错误,并提供了实用的避免策略。通过分析典型错误案例,本文旨在帮助开发者更好地理解和掌握多线程环境下的编程技巧,从而提升并发程序的稳定性和性能。 ####
|
30天前
|
安全 算法 Java
Java多线程编程中的陷阱与最佳实践####
本文探讨了Java多线程编程中常见的陷阱,并介绍了如何通过最佳实践来避免这些问题。我们将从基础概念入手,逐步深入到具体的代码示例,帮助开发者更好地理解和应用多线程技术。无论是初学者还是有经验的开发者,都能从中获得有价值的见解和建议。 ####
|
30天前
|
Java 调度
Java中的多线程编程与并发控制
本文深入探讨了Java编程语言中多线程编程的基础知识和并发控制机制。文章首先介绍了多线程的基本概念,包括线程的定义、生命周期以及在Java中创建和管理线程的方法。接着,详细讲解了Java提供的同步机制,如synchronized关键字、wait()和notify()方法等,以及如何通过这些机制实现线程间的协调与通信。最后,本文还讨论了一些常见的并发问题,例如死锁、竞态条件等,并提供了相应的解决策略。
50 3
|
1月前
|
开发框架 安全 Java
Java 反射机制:动态编程的强大利器
Java反射机制允许程序在运行时检查类、接口、字段和方法的信息,并能操作对象。它提供了一种动态编程的方式,使得代码更加灵活,能够适应未知的或变化的需求,是开发框架和库的重要工具。
50 3
|
2月前
|
安全 Java 开发者
Java中的多线程编程:从基础到实践
本文深入探讨了Java多线程编程的核心概念和实践技巧,旨在帮助读者理解多线程的工作原理,掌握线程的创建、管理和同步机制。通过具体示例和最佳实践,本文展示了如何在Java应用中有效地利用多线程技术,提高程序性能和响应速度。
70 1