异步爬虫实践攻略:利用Python Aiohttp框架实现高效数据抓取

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 本文介绍了如何使用Python的Aiohttp框架构建异步爬虫,以提升数据抓取效率。异步爬虫利用异步IO和协程技术,在等待响应时执行其他任务,提高效率。Aiohttp是一个高效的异步HTTP客户端/服务器框架,适合构建此类爬虫。文中还展示了如何通过代理访问HTTPS网页的示例代码,并以爬取微信公众号文章为例,说明了实际应用中的步骤。

在当今信息爆炸的时代,数据是无处不在且变化迅速的。为了从海量数据中获取有用的信息,异步爬虫技术应运而生,成为许多数据挖掘和分析工作的利器。本文将介绍如何利用Python Aiohttp框架实现高效数据抓取,让我们在信息的海洋中快速捕捉所需数据。
异步爬虫介绍
异步爬虫是指在进行数据抓取时能够实现异步IO操作的爬虫程序。传统的爬虫程序一般是同步阻塞的,即每次发送请求都需要等待响应返回后才能进行下一步操作,效率较低。而异步爬虫可以在发送请求后不阻塞等待响应,而是继续执行其他任务,从而提升了数据抓取效率。
Aiohttp框架介绍
Aiohttp是一个基于异步IO的HTTP客户端/服务器框架,专门用于处理HTTP请求和响应。它结合了Python的协程技术,提供了非常便捷的方式来实现异步HTTP请求。Aiohttp具有高效、灵活的特点,适合用于构建异步爬虫程序。
异步过程
在异步爬虫中,我们通常会用到异步IO、协程和事件循环等概念。异步IO是指在进行IO密集型任务时,能够在等待IO操作的过程中执行其他任务。而协程是一种轻量级的线程,可以在线程之间快速切换,实现并发执行。事件循环则是异步程序的控制中心,负责调度协程的执行。
一、环境配置
在开始之前,我们需要确保已经安装了Python和相关依赖库。通过以下命令安装Aiohttp和asyncio:
```pip install aiohttp
pip install asyncio

二、Aiohttp通过代理访问HTTPS网页
有时候我们需要通过代理来访问HTTPS网页。使用Aiohttp可以简便地实现这个需求,以下是一个示例代码:这段代码展示了如何利用Aiohttp通过代理访问HTTPS网页,从而让数据抓取更加灵活多样。
```import aiohttp

async def fetch(url, proxy):
    async with aiohttp.ClientSession() as session:
        connector = aiohttp.TCPConnector(limit=100, ssl=False)
        proxy_auth = aiohttp.BasicAuth(proxyUser, proxyPass)
        async with session.get(url, proxy=proxy, connector=connector, proxy_auth=proxy_auth) as response:
            return await response.text()

url = "https://example.com"
proxy = "http://www.16yun.cn:5445"

proxyHost = "www.16yun.cn"
proxyPort = "5445"
proxyUser = "16QMSOML"
proxyPass = "280651"

html = await fetch(url, proxy)
print(html)

三、异步协程方式通过代理访问HTTPS网页
除了简单的异步请求,我们还可以利用异步协程方式实现更高效的数据抓取。以下是一个示例代码:
```import aiohttp
import asyncio

proxyHost = "www.16yun.cn"
proxyPort = "5445"
proxyUser = "16QMSOML"
proxyPass = "280651"

async def fetch(url, session):
async with session.get(url) as response:
return await response.text()

async def main():
proxy = f"http://{proxyUser}:{proxyPass}@{proxyHost}:{proxyPort}/"
url = "https://example.com"

async with aiohttp.ClientSession() as session:
    html = await fetch(url, session)
    print(html)

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

爬取案例(以微信公众号为案例)
我们以爬取微信公众号文章为例,演示如何利用 Python Aiohttp 框架实现高效数据抓取:
步骤:
1. 首先,我们需要获取微信公众号的历史文章列表接口,可以通过 Fiddler 等工具抓取相关请求。
2. 接下来,编写 Python 程序,利用 Aiohttp 发送异步请求获取历史文章列表数据。
```import aiohttp
import asyncio

async def fetch_article(url):
    async with aiohttp.ClientSession() as session:
        async with session.get(url) as response:
            return await response.json()

async def main():
    urls = ['https://api.weixin.qq.com/get_article_list', 'https://api.weixin.qq.com/get_article_list']
    tasks = [fetch_article(url) for url in urls]
    results = await asyncio.gather(*tasks)
    for result in results:
        print(result)

if __name__ == '__main__':
    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
17天前
|
数据采集 存储 XML
Python爬虫:深入探索1688关键词接口获取之道
在数字化经济中,数据尤其在电商领域的价值日益凸显。1688作为中国领先的B2B平台,其关键词接口对商家至关重要。本文介绍如何通过Python爬虫技术,合法合规地获取1688关键词接口,助力商家洞察市场趋势,优化营销策略。
|
2天前
|
数据采集 JSON API
如何利用Python爬虫淘宝商品详情高级版(item_get_pro)API接口及返回值解析说明
本文介绍了如何利用Python爬虫技术调用淘宝商品详情高级版API接口(item_get_pro),获取商品的详细信息,包括标题、价格、销量等。文章涵盖了环境准备、API权限申请、请求构建和返回值解析等内容,强调了数据获取的合规性和安全性。
|
2天前
|
JSON 数据可视化 测试技术
python+requests接口自动化框架的实现
通过以上步骤,我们构建了一个基本的Python+Requests接口自动化测试框架。这个框架具有良好的扩展性,可以根据实际需求进行功能扩展和优化。它不仅能提高测试效率,还能保证接口的稳定性和可靠性,为软件质量提供有力保障。
17 7
|
7天前
|
数据采集 存储 API
利用Python爬虫获取1688关键词接口全攻略
本文介绍如何使用Python爬虫技术合法合规地获取1688关键词接口数据,包括环境准备、注册1688开发者账号、获取Access Token、构建请求URL、发送API请求、解析HTML及数据处理存储等步骤,强调遵守法律法规和合理使用爬虫技术的重要性。
|
14天前
|
数据采集 JSON 开发者
Python爬虫京东商品详情数据接口
京东商品详情数据接口(JD.item_get)提供商品标题、价格、品牌、规格、图片等详细信息,适用于电商数据分析、竞品分析等。开发者需先注册账号、创建应用并申请接口权限,使用时需遵循相关规则,注意数据更新频率和错误处理。示例代码展示了如何通过 Python 调用此接口并处理返回的 JSON 数据。
|
18天前
|
XML 数据采集 数据格式
Python 爬虫必备杀器,xpath 解析 HTML
【11月更文挑战第17天】XPath 是一种用于在 XML 和 HTML 文档中定位节点的语言,通过路径表达式选取节点或节点集。它不仅适用于 XML,也广泛应用于 HTML 解析。基本语法包括标签名、属性、层级关系等的选择,如 `//p` 选择所有段落标签,`//a[@href='example.com']` 选择特定链接。在 Python 中,常用 lxml 库结合 XPath 进行网页数据抓取,支持高效解析与复杂信息提取。高级技巧涵盖轴的使用和函数应用,如 `contains()` 用于模糊匹配。
|
15天前
|
敏捷开发 测试技术 持续交付
自动化测试之美:从零开始搭建你的Python测试框架
在软件开发的马拉松赛道上,自动化测试是那个能让你保持节奏、避免跌宕起伏的神奇小助手。本文将带你走进自动化测试的世界,用Python这把钥匙,解锁高效、可靠的测试框架之门。你将学会如何步步为营,构建属于自己的测试庇护所,让代码质量成为晨跑时清新的空气,而不是雾霾中的忧虑。让我们一起摆脱手动测试的繁琐枷锁,拥抱自动化带来的自由吧!
|
21天前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。
|
20天前
|
数据采集 JavaScript 前端开发
Python爬虫能处理动态加载的内容吗?
Python爬虫可处理动态加载内容,主要方法包括:使用Selenium模拟浏览器行为;分析网络请求,直接请求API获取数据;利用Pyppeteer控制无头Chrome。这些方法各有优势,适用于不同场景。
|
26天前
|
缓存 API 数据库
Python哪个框架合适开发速卖通商品详情api?
在跨境电商平台速卖通的商品详情数据获取与整合中,Python 语言及其多种框架(如 Flask、Django、Tornado 和 FastAPI)提供了高效解决方案。Flask 简洁灵活,适合快速开发;Django 功能全面,适用于大型项目;Tornado 性能卓越,擅长处理高并发;FastAPI 结合类型提示和异步编程,开发体验优秀。选择合适的框架需综合考虑项目规模、性能要求和团队技术栈。
26 2