2024.3.20隐语训练营第3讲笔记:详解隐私计算框架及技术要点

简介: 隐语架构是一个分层设计,支持不同技术路线,确保高内聚、低耦合,增强开放性。它包括产品层(如SecretPad和SecretNote)、算法层(如PSI和PIR协议)、计算层(RayFed和SPU)、资源层(KUSCIA)和互联互通及跨域管控机制。该架构旨在提供高性能、易用的隐私计算解决方案,支持MPC、TEE、SCQL等,并允许不同背景的研究人员参与。

一、隐语架构概览

隐语分层架构设计,可以支持不同的技术路线,同时使得层内高内聚,层间低耦合,增强了开放性,不同技术路线的研究人员都可以在对应的层发挥自己的优势。

image.png

image.png

二、隐语架构拆解

1、产品层

  • SecretPad:轻量化安装, 可以快速体验隐语的功能
  • 多部署形态:目前有中心模式,之后会发行P2P模式
  • 全栈产品:支持MPC,TEE,SCQL等
  • SecretNote:Notebook形式,可以跟踪运行状态,进行交互式建模,以及多节点的管理和交互

2、算法层——高性能,易用的协议模块

  • PSI:一种特殊的MPC协议,求两方数据的交集,除此之外不泄露其他信息
  • 丰富的协议:半诚实模型(两方/多方);恶意模型
  • 性能和协议优化
  • 多层入口:白屏用户/开发人员
  • PIR:用户查询服务端数据库中的数据,但服务端不知道用户查询的是哪些数据
  • 丰富的协议:Sealed PIR;Label PIR...
  • 性能和协议优化
  • 多层入口:白屏用户/开发人员
  • Data Analysis——SCQL

image.png

  • 多方安全数据分析系统,可以使互不信任的参与方在保护自己数据隐私的前提下,完成多方数据分析任务
  • 屏蔽了底层协议
  • 核心特性
  • 半诚实安全模型
  • 支持≥2的参与方
  • 兼容MySQL,支持常用的SQL语法和算子
  • 数据使用授权管控
  • 支持多种密态协议
  • 联邦学习
  • 在原始数据不出域的前提下,交换中间数据完成机器学习建模
  • 包含水平联邦和垂直联邦(主要是拆分学习,Split Learning)
  • 具备安全攻防保障的明密文混合的机器学习算法和框架
  • 安全风险度量体系
  • 攻防框架
  • 攻防算法
  • 性能优化
  • 包含常见算法

3、计算层

  • 混合编译调度-RayFed
  • 在Ray基础之上所构建的专注于跨机构的分布式计算调度框架
  • 面向跨机构场景
  • 密态引擎-SPU(Secure Process Unit)

image.png

  • 隐语密态计算核心模块之一
  • 桥接上层算法和底层安全协议
  • 为用户提供透明的, 高性能的, 基于安全协议的密态计算能力
  • 面向机器学习研发人员, 密码协议研发人员, 编译器研发人员
  • 核心特性
  • 对接主流AI前端
  • 支持多种机器学习算法
  • 高性能MPC协议虚拟机
  • 有丰富的MPC协议, 适配多种场景
  • 支持协议扩展
  • 多种数据并行, 指令并行优化
  • HEU

image.png

  • TEEU-可信执行环境单元

支持多种可信执行环境的, 具备数据使用跨域管控能力的密态计算枢纽,可执行数据分析, 机器学习, MPC/FL加速等功能

image.png

  • 密码原语-YACL
  • 多种隐私计算技术路线共同需要的密码库, 具备安全实现保证, 性能高等特点
  • 现状:

image.png

4、资源层-KUSCIA

  • 屏蔽不同机构之间基础设施的差异,为跨机构协作提供丰富可靠的资源管理和任务调度能力
  • 可以运行多种框架
  • KUSCIA架构

image.png

5、互联互通

  • 使隐语和其他厂商互联互通, 共同完成隐私计算任务
  • 模式: 黑盒模式, 白盒模式

image.png

6、跨域管控

  • 数据离开持有者的运维域后, 数据方仍然能够有效的控制数据的流转过程, 避免被窃取或者非预期使用
  • 三权分置

image.png








目录
相关文章
|
3天前
|
人工智能 自然语言处理 Shell
深度评测 | 仅用3分钟,百炼调用满血版 Deepseek-r1 API,百万Token免费用,简直不要太爽。
仅用3分钟,百炼调用满血版Deepseek-r1 API,享受百万免费Token。阿里云提供零门槛、快速部署的解决方案,支持云控制台和Cloud Shell两种方式,操作简便。Deepseek-r1满血版在推理能力上表现出色,尤其擅长数学、代码和自然语言处理任务,使用过程中无卡顿,体验丝滑。结合Chatbox工具,用户可轻松掌控模型,提升工作效率。阿里云大模型服务平台百炼不仅速度快,还确保数据安全,值得信赖。
143101 24
深度评测 | 仅用3分钟,百炼调用满血版 Deepseek-r1 API,百万Token免费用,简直不要太爽。
|
5天前
|
人工智能 API 网络安全
用DeepSeek,就在阿里云!四种方式助您快速使用 DeepSeek-R1 满血版!更有内部实战指导!
DeepSeek自发布以来,凭借卓越的技术性能和开源策略迅速吸引了全球关注。DeepSeek-R1作为系列中的佼佼者,在多个基准测试中超越现有顶尖模型,展现了强大的推理能力。然而,由于其爆火及受到黑客攻击,官网使用受限,影响用户体验。为解决这一问题,阿里云提供了多种解决方案。
16574 37
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
|
5天前
|
并行计算 PyTorch 算法框架/工具
本地部署DeepSeek模型
要在本地部署DeepSeek模型,需准备Linux(推荐Ubuntu 20.04+)或兼容的Windows/macOS环境,配备NVIDIA GPU(建议RTX 3060+)。安装Python 3.8+、PyTorch/TensorFlow等依赖,并通过官方渠道下载模型文件。配置模型后,编写推理脚本进行测试,可选使用FastAPI服务化部署或Docker容器化。注意资源监控和许可协议。
1290 8
|
13天前
|
人工智能 搜索推荐 Docker
手把手教你使用 Ollama 和 LobeChat 快速本地部署 DeepSeek R1 模型,创建个性化 AI 助手
DeepSeek R1 + LobeChat + Ollama:快速本地部署模型,创建个性化 AI 助手
3408 117
手把手教你使用 Ollama 和 LobeChat 快速本地部署 DeepSeek R1 模型,创建个性化 AI 助手
|
8天前
|
人工智能 自然语言处理 API
DeepSeek全尺寸模型上线阿里云百炼!
阿里云百炼平台近日上线了DeepSeek-V3、DeepSeek-R1及其蒸馏版本等六款全尺寸AI模型,参数量达671B,提供高达100万免费tokens。这些模型在数学、代码、自然语言推理等任务上表现出色,支持灵活调用和经济高效的解决方案,助力开发者和企业加速创新与数字化转型。示例代码展示了如何通过API使用DeepSeek-R1模型进行推理,用户可轻松获取思考过程和最终答案。
|
5天前
|
人工智能 自然语言处理 程序员
如何在通义灵码里用上DeepSeek-V3 和 DeepSeek-R1 满血版671B模型?
除了 AI 程序员的重磅上线外,近期通义灵码能力再升级全新上线模型选择功能,目前已经支持 Qwen2.5、DeepSeek-V3 和 R1系列模型,用户可以在 VSCode 和 JetBrains 里搜索并下载最新通义灵码插件,在输入框里选择模型,即可轻松切换模型。
925 14
|
12天前
|
API 开发工具 Python
阿里云PAI部署DeepSeek及调用
本文介绍如何在阿里云PAI EAS上部署DeepSeek模型,涵盖7B模型的部署、SDK和API调用。7B模型只需一张A10显卡,部署时间约10分钟。文章详细展示了模型信息查看、在线调试及通过OpenAI SDK和Python Requests进行调用的步骤,并附有测试结果和参考文档链接。
1932 9
阿里云PAI部署DeepSeek及调用
|
9天前
|
人工智能 数据可视化 Linux
【保姆级教程】3步搞定DeepSeek本地部署
DeepSeek在2025年春节期间突然爆火出圈。在目前DeepSeek的网站中,极不稳定,总是服务器繁忙,这时候本地部署就可以有效规避问题。本文以最浅显易懂的方式带读者一起完成DeepSeek-r1大模型的本地部署。
|
12天前
|
缓存 自然语言处理 安全
快速调用 Deepseek API!【超详细教程】
Deepseek 强大的功能,在本教程中,将指导您如何获取 DeepSeek API 密钥,并演示如何使用该密钥调用 DeepSeek API 以进行调试。

热门文章

最新文章