umap:一个小巧而强大的Python库,探索高维数据的降维与可视化

简介: umap:一个小巧而强大的Python库,探索高维数据的降维与可视化

引言


在数据科学和机器学习领域,我们经常面对高维数据的挑战。高维数据不仅难以理解和可视化,而且会增加计算复杂性。


为了解决这一问题,我们可以利用降维技术 将高维数据映射到低维空间,以便更好地理解数据结构和进行进一步分析。


本篇文章小编将为小伙伴们介绍umap库,这是一个强大的Python第三方库,用于降维和可视化高维数据。


介绍


umap(Uniform Manifold Approximation and Projection) 是一种非线性降维技术,它能够在保留数据结构的同时将高维数据映射到低维空间。


工作原理:


umap基于一种称为“流形学习”的技术,该技术假设高维数据存在于一个低维流形上。通过在低维空间中找到数据的最佳表示。


umap算法结合了局部邻域结构全局拓扑信息,能够更好地捕捉数据的非线性结构。并且提供了简单易用的接口,可以帮助用户快速进行数据降维和可视化操作。


它核心算法基于一种随机邻域嵌入(Random Neighborhood Embedding,RNE)方法。该方法通过构建数据点的邻域图,并在低维空间中找到保持邻域关系的最优映射。


主要功能:


  • 降维:将高维数据映射到低维空间,同时保留数据的全局结构。
  • 可视化:通过将降维后的数据映射到二维或三维空间,可以创建数据的可视化表示。
  • 邻域保留:umap 试图保留数据点之间的邻域关系,从而保持数据的局部结构。
  • 可扩展性:umap 可以处理大规模数据集,并且在计算效率方面表现良好。


使用及应用


首先,我们需要安装umap库。可以使用pip来进行安装:

pip install umap-learn

接下来,我们可以使用UMAP库来对高维数据进行降维和可视化。下面是一个简单的示例代码:

import umap
from sklearn.datasets import load_digits
from sklearn.datasets import make_moons
import matplotlib.pyplot as plt
# 手写数字数据集
digits = load_digits()
data = digits.data
target = digits.target
# 使用UMAP进行降维
reducer = umap.UMAP()
embedding = reducer.fit_transform(data)
# 可视化降维后的数据
plt.scatter(embedding[:, 0], embedding[:, 1], c=target, cmap='Spectral', s=5)
plt.colorbar()
plt.show()
# 生成一个包含两个聚类的模拟数据集
X, y = make_moons(n_samples=2000, noise=0.05)
# 使用 UMAP 进行降维
reducer = umap.UMAP(n_components=2)
embedding = reducer.fit_transform(X)
# 可视化降维结果
plt.figure(figsize=(8, 6))
plt.scatter(embedding[:, 0], embedding[:, 1], c=y, cmap='viridis')
plt.title('UMAP Projection of Moon Data')
plt.show()

通过上面的代码,我们可以将手写数字数据集降维到二维空间,并用散点图展示数据的分布情况。

它还提供了许多参数和选项,可以根据具体需求对降维过程进行调整和优化。


umap在数据分析、聚类、分类、异常检测等领域都有广泛的应用。通过降维和可视化高维数据,我们可以更好地理解数据特征和结构,从而为后续的分析和建模工作提供更好的基础。


总结


umap库是一个强大的工具,可以帮助我们处理高维数据的降维和可视化问题。


通过结合局部邻域结构和全局拓扑信息,其算法能够更好地捕捉数据的非线性结构,为我们提供了一种有效的数据分析工具。


希望本文能够帮助小伙伴们更好地了解umap的基本原理和应用方法,从而在实际工作中更好地利用这一强大工具。

相关文章
|
19天前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
|
10天前
|
XML JSON 数据库
Python的标准库
Python的标准库
126 77
|
25天前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
73 4
数据分析的 10 个最佳 Python 库
|
11天前
|
XML JSON 数据库
Python的标准库
Python的标准库
39 11
|
24天前
|
人工智能 API 开发工具
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
吴恩达发布的开源Python库aisuite,提供了一个统一的接口来调用多个大型语言模型(LLM)服务。支持包括OpenAI、Anthropic、Azure等在内的11个模型平台,简化了多模型管理和测试的工作,促进了人工智能技术的应用和发展。
97 1
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
|
11天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
54 8
|
15天前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
77 7
|
17天前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
19天前
|
安全 API 文件存储
Yagmail邮件发送库:如何用Python实现自动化邮件营销?
本文详细介绍了如何使用Yagmail库实现自动化邮件营销。Yagmail是一个简洁强大的Python库,能简化邮件发送流程,支持文本、HTML邮件及附件发送,适用于数字营销场景。文章涵盖了Yagmail的基本使用、高级功能、案例分析及最佳实践,帮助读者轻松上手。
29 4
|
7月前
|
机器学习/深度学习 存储 数据可视化
数据分享|Python在Scikit-Learn可视化随机森林中的决策树分析房价数据
数据分享|Python在Scikit-Learn可视化随机森林中的决策树分析房价数据
下一篇
DataWorks