隐语学习2024-03-19 ----------隐私计算开源如何助力数据要素流通

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 该内容讨论了数据要素的流转与内外循环,强调了数据持有方在内循环中的全责以及在外循环中仍需保持管控。数据外循环带来了信任焦虑,如隐私泄露、运维可信性、数据使用合规性等问题。为解决这些问题,提出了三权分置的数据归属概念和完备的信任链技术,包括隐私计算和区块链等。隐私计算期望实现数据可用不可见、可控可计量和可算不可识的原则。开源隐私计算项目如隐语,以其统一架构、开放扩展性、原生应用和高性能,有望促进数据要素的安全流通。

核心内容:

  • 数据要素流转与数据内外循环
  • 数据流转链路包括采集,存储,加工,使用,提供,传输
  • 内循环
  • 数据持有方在自己的运维管控域内对自己的数据使用和安全全责
  • 外循环
  • 数据要素离开持有方管控域,在使用方运维域,持有方依然拥有管控需求和责任
  • 数据外循环中的信任焦虑
  • 常见问题
  • 使用过程能保障隐私不泄露么
  • 运维可信
  • 使用方会按约定使用么
  • 数据在流通中会不会被泄露
  • 数据来源合规么
  • 支持流通的技术产品有没有安全风险
  • 数据归属
  • 三权分置下,解决流通过程很重数据提供方的数据持有权,经营方的经营权,并防止数据滥用,从而促进数据有效流通
  • 数据生成===>数据资源持有权
  • 数据流通===> 数据加工使用权
  • 数据消费===>数据产品经营权
  • 技术信任的核心==完备的信任链
  • 数据层面(隐私计算,构建密态数联网,包括密态枢纽和密态管道)
  • 控制层面(区块链/可信计算 数据使用跨域管控层)
  • 从主体信任到技术信任
  • 运维权限最小化
  • 完备的信任链
  • 远程验证
  • 可信安全模块
  • 数据要素流通对隐私计算的期望
  • 三个原则
  • 原始数据不出域,数据可用不可见
  • 数据使用,可控可计量
  • 数据可算不可识
  • 隐私计算开源助力数据要素流通
  • 开源
  • 隐语的优势
  • 统一架构
  • 开放扩展
  • 原生应用
  • 性能卓越(十一亿求交,)
相关文章
|
8月前
|
存储 运维 安全
课2-隐私计算开源如何助力数据要素流通
数据要素市场关键在于数据的内外循环,其中外循环面临数据权属、信任等问题。为解决这些问题,需建立基于区块链、可信计算的安全技术信任体系,并借助隐私计算保证数据流通时的隐私性。隐私计算遵循数据不可见、使用可控及不可识的原则,通过开源降低流通门槛。隐语作为开源隐私计算平台,具备统一架构、开放拓展、原生应用和高性能等优势,助力数据要素安全流通。
|
8月前
|
安全
隐私计算开源如何助力数据要素流通
这一讲的第一部分对上一讲中提到的,数据流转中的利益对齐和安全焦虑问题进行补充:[第2讲:隐私计算开源如何助力数据要素流通](https://www.bilibili.com/video/BV11p421U73N/)。
|
3月前
|
人工智能 安全 大数据
CDGA|数据要素与数据安全:携手构建可信数据生态的深远探讨
数据要素与数据安全是数字经济时代不可分割的双生子。只有在保障数据安全的前提下,才能充分发挥数据要素的价值,推动数字经济持续健康发展。构建可信数据生态,需要政府、企业、社会组织及广大公众的共同努力,形成合力,共同应对挑战,共创数字经济的美好未来。
|
7月前
|
安全 区块链 数据安全/隐私保护
第2讲 隐私计算开源如何助力数据要素流通
数据流通涉及关键主体:数据提供方关注商业秘密、个人隐私、数据控制与安全;数据消费方关注授权链与合规性;数据平台方提供主体审核、授权链审查、合规评审及商业秘密保护,初期依赖主体可信,需逐步转向技术可信。关键技术包括隐私计算实现数据可用不可见,数据空间+区块链确保数据可控可计量,以及数据匿名化实现可算不可识。
105 2
|
8月前
|
监控 安全 数据可视化
第9讲:隐语多方安全计算在安全核对的行业实践丨隐私计算实训营 第1期
行业法规趋势强调数据安全与隐私保护,如《个人信息安全规范》、《数据安全法》和《个人信息保护法》,倡导最小权限原则和数据的有效利用。产品方案致力于在保障安全和隐私的前提下促进数据共享。技术共建中,与隐语合作构建安全自证能力,包括可审查性、可视化监控和可攻防的验证机制,确保数据操作透明且安全。
85 1
|
8月前
|
算法 数据库
隐私计算实训营第6讲-------隐语PIR介绍及开发实践丨隐私计算实训营 第1期
隐匿查询(PIR)允许用户在不暴露查询内容的情况下检索服务器数据库。PIR分为单服务器和多服务器方案,以及Index PIR和Keyword PIR两类。隐语目前实现了单服务器的SealPIR(用于Index PIR)和Labeled PSI(用于Keyword PIR)。SealPIR优化点包括:数据打包、查询向量压缩、支持多维和多个查询。未来,隐语PIR的计划包括性能提升、多服务器方案和新算法的探索。
381 3
|
8月前
|
安全 区块链 数据安全/隐私保护
隐私计算实训营 第1期-第2讲 隐私计算开源如何助力数据要素流通
本文探讨了数据要素流通中的三个关键主体——数据提供方、数据消费方和数据平台方的忧虑。数据提供方关注商业秘密、个人隐私、数据使用控制及安全合规;数据消费方则担忧数据授权链和合规使用;数据平台方旨在解决双方疑虑,提供主体审核、授权链路审核、合规评审等服务。技术可信是关键,涉及隐私计算(数据可用不可见)、数据空间与区块链技术(数据可控可计量)以及数据匿名化(数据可算不可识)等。
|
8月前
|
存储 安全 数据安全/隐私保护
隐语实训营-第2讲:隐私计算开源助力数据要素流通
数据要素大潮带来了全新的数据安全外循环技术挑战,即信任焦虑,需要从主体信任逐渐转向技术信任。面对这些挑战,隐私计算需要不断丰富其内涵,不断标准化其产品能力的度量尺度,不断降低接入门槛。而开源隐语具有技术优势和专业的安全验证,获得过多项权威认定和荣誉,极大地推动了行业标准化及生态建设。
119 1
|
8月前
|
安全 区块链 数据安全/隐私保护
2024.3.19隐语训练营第2讲笔记:隐私计算开源助力数据要素流通
本节课探讨了数据要素的流转和内外循环,在数据外循环中,存在数据权属和信任焦虑问题,为此提出了通过匿名化、隐私计算和区块链等技术建立技术信任体系。隐私计算遵循数据可用不可见、使用可控可计量和计算不可识的三大原则,并有安全分级标准。蚂蚁集团的隐语框架,有助于推动数据要素流通和行业进步,降低学习和应用门槛,同时增强用户对产品安全性的信心。
94 2
|
8月前
|
数据采集 运维 安全