本文为魔搭社区轻量级训练推理工具SWIFT微调实战教程系列
SWIFT支持了开源模型,尤其是中小型模型(7B、14B等)对Agent场景的训练,并将loss-scale技术应用到agent训练中,使中小模型API Call能力更稳定,并支持使用单张商业级显卡进行Agent推理和部署,可以直接在生产场景中全链路闭环落地使用。
接下来进入手把手Agent微调实操:
1.环境安装
# 设置pip全局镜像 (加速下载) pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/ # 安装ms-swift git clone https://github.com/modelscope/swift.git cd swift pip install -e .[llm] # 环境对齐 (通常不需要运行. 如果你运行错误, 可以跑下面的代码, 仓库使用最新环境测试) pip install -r requirements/framework.txt -U pip install -r requirements/llm.txt -U
2.数据准备
为训练Agent能力,魔搭官方提供了两个开源数据集:
- 魔搭通用问答知识数据集(包含38万条通用知识多轮对话数据)
- 魔搭通用Agent训练数据集(包含3万条Agent格式的API调用数据)
魔搭通用问答数据集数据格式如下:
{ "id": "MS_Agent_Bench_126374", "conversations": [{ "from": "system", "value": "Answer the following questions as best you can. You have access to the following APIs:\n1. hm_recipe_recommend: Call this tool to interact with the hmreciperecommend API. What is the hmreciperecommend API useful for? . Parameters: [{\"name\": \"keywords_dict\", \"description\": \"盒马推荐菜谱关键词字典。\", \"required\": \"True\"}]\n\n2. hm_product_marketing: Call this tool to interact with the hmproductmarketing API. What is the hmproductmarketing API useful for? . Parameters: [{\"name\": \"sku_code_list\", \"description\": \"盒马商品的编码列表\", \"required\": \"True\"}]\n\n3. hm_product_info: Call this tool to interact with the hmproductinfo API. What is the hmproductinfo API useful for? . Parameters: [{\"name\": \"sku_code_list\", \"description\": \"盒马商品的编码列表\", \"required\": \"True\"}, {\"name\": \"sku_name_list\", \"description\": \"盒马商品的名称列表\", \"required\": \"True\"}, {\"name\": \"property_list\", \"description\": \"盒马商品的属性列表\", \"required\": \"True\"}]\n\n4. hm_product_recommend: Call this tool to interact with the hmproductrecommend API. What is the hmproductrecommend API useful for? . Parameters: [{\"name\": \"keywords_dict\", \"description\": \"盒马推荐商品关键词字典。\", \"required\": \"True\"}]\n\nUse the following format:\n\nThought: you should always think about what to do\nAction: the action to take, should be one of the above tools[hm_recipe_recommend, hm_product_marketing, hm_product_info, hm_product_recommend]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can be repeated zero or more times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\nBegin!" }, { "from": "user", "value": "你好,请问你们有哪些手机可以推荐?" }, { "from": "assistant", "value": "Action: hm_product_recommend\nAction Input: {'keywords_dict': {'商品类目': '手机'}}\nObservation: [{'sku_code': '10518244314', 'product_name': '小米11 Ultra 5G手机 256GB', 'bussiness_type': '标品', 'product_price': '5999', 'product_description': '拥有120Hz高刷新率和骁龙888处理器,还配备了高品质相机系统'}, {'sku_code': '10222726664', 'product_name': 'vivo X60 Pro 5G手机 256GB', 'bussiness_type': '标品', 'product_price': '4498', 'product_description': '搭载Exynos 1080处理器与ZEISS联合调校的相机系统,拍照实力十足'}, {'sku_code': '18227073452', 'product_name': '华为畅享 20 Pro 5G手机 128GB', 'bussiness_type': '标品', 'product_price': '2699', 'product_description': '拥有4000mAh的电池容量和优秀的相机而价格非常亲民'}]\nThought: I now know the final answer\nFinal Answer: 您好,我们有以下几款手机供您选择:1.小米11 Ultra 5G手机 256GB:价格为5999元,拥有120Hz高刷新率和骁龙888处理器,还配备了高品质相机系统;2. vivo X60 Pro 5G手机 256GB:售价为4498元,搭载Exynos 1080处理器与ZEISS联合调校的相机系统,拍照实力十足;3. 华为畅享 20 Pro 5G手机 128GB:价格亲民,只需2699元即可拥有优秀的相机和4000mAh的电池容量。这些手机都具有不同的特点和功能,您可以根据自己的需求进行选择。如果您有其他问题或需求,请随时告诉我。" }, { "from": "user", "value": "我想买一款拍照好的手机,有推荐吗?" }, { "from": "assistant", "value": "Action: hm_product_recommend\nAction Input: {'keywords_dict': {'商品类目': '手机', '适用场景': '拍照'}}\nObservation: [{'sku_code': '15956662254', 'product_name': '小米11 Ultra 5G手机 256GB', 'bussiness_type': '标品', 'product_price': '5999', 'product_description': '拥有120Hz高刷新率和骁龙888处理器,还配备了高品质相机系统'}, {'sku_code': '19424216918', 'product_name': 'vivo X60 Pro 5G手机 256GB', 'bussiness_type': '标品', 'product_price': '4498', 'product_description': '搭载Exynos 1080处理器与ZEISS联合调校的相机系统,拍照实力十足'}, {'sku_code': '14347982715', 'product_name': 'OPPO Ace2 5G手机 256GB', 'bussiness_type': '标品', 'product_price': '3999', 'product_description': '拍照实力十足,支持65W超级闪充'}]\nThought: I now know the final answer\nFinal Answer: 如果您想要一款拍照表现出色的手机,我为您推荐以下几款产品:1.小米11 Ultra 5G手机 256GB:价格为5999元,配备了高品质相机系统,可以拍摄出色的照片;2. vivo X60 Pro 5G手机 256GB:售价为4498元,相机系统由ZEISS联合调校,拍照实力十足;3. OPPO Ace2 5G手机 256GB:价格为3999元,不仅拍照实力十足,还支持65W超级闪充,让你的手机充电更加便捷。这些手机都有不同的特点和功能,您可以根据自己的需求进行选择。如果您还有其他问题或需求,请随时告诉我。" }, { "from": "user", "value": "小米11 Ultra拍照性能怎么样?" }, { "from": "assistant", "value": "Action: hm_product_info\nAction Input: {'sku_code_list': ['15956662254'], 'sku_name_list': ['小米11 Ultra 5G手机 256GB'], 'property_list': [['拍照性能']]}\nObservation: [{'sku_code': '15956662254', 'property': {'拍照性能': '小米11 Ultra 5G手机配备了1亿像素的主摄像头,还有120X超长焦电影摄像头,以及20MP超广角摄像头等组合,拍照性能非常出色。'}}]\nThought: I now know the final answer\nFinal Answer: 小米11 Ultra 5G手机配备了1亿像素的主摄像头,还有120X超长焦电影摄像头,以及20MP超广角摄像头等组合,拍照性能非常出色。如果您还有其他问题或需求,请随时告诉我。" }] }
Agent数据集的system字段具体格式如下(将\"字符转换为"字符, \n转换为换行):
Answer the following questions as best you can. You have access to the following APIs: 1. hm_recipe_recommend: Call this tool to interact with the hmreciperecommend API. What is the hmreciperecommend API useful for? . Parameters: [{"name": "keywords_dict", "description": "盒马推荐菜谱关键词字典。", "required": "True"}] 2. hm_product_marketing: Call this tool to interact with the hmproductmarketing API. What is the hmproductmarketing API useful for? . Parameters: [{"name": "sku_code_list", "description": "盒马商品的编码列表", "required": "True"}] 3. hm_product_info: Call this tool to interact with the hmproductinfo API. What is the hmproductinfo API useful for? . Parameters: [{"name": "sku_code_list", "description": "盒马商品的编码列表", "required": "True"}, {"name": "sku_name_list", "description": "盒马商品的名称列表", "required": "True"}, {"name": "property_list", "description": "盒马商品的属性列表", "required": "True"}] 4. hm_product_recommend: Call this tool to interact with the hmproductrecommend API. What is the hmproductrecommend API useful for? . Parameters: [{"name": "keywords_dict", "description": "盒马推荐商品关键词字典。", "required": "True"}] Use the following format: Thought: you should always think about what to do Action: the action to take, should be one of the above tools[hm_recipe_recommend, hm_product_marketing, hm_product_info, hm_product_recommend] Action Input: the input to the action Observation: the result of the action ... (this Thought/Action/Action Input/Observation can be repeated zero or more times) Thought: I now know the final answer Final Answer: the final answer to the original input question Begin!
API格式:
Answer the following questions as best you can. You have access to the following APIs: 序号: API名称: API作用 API参数 ... Use the following format: Thought: you should always think about what to do Action: the action to take, should be one of the above tools[API名称列表] Action Input: the input to the action Observation: the result of the action ... (this Thought/Action/Action Input/Observation can be repeated zero or more times) Thought: I now know the final answer Final Answer: the final answer to the original input question Begin!
Agent数据集调用API的response的结构如下:
Agent数据集调用API的response的结构如下: Action: hm_product_recommend Action Input: {'keywords_dict': {'商品类目': '手机', '适用场景': '拍照'}} Observation: [{'sku_code': '15956662254', 'product_name': '小米11 Ultra 5G手机 256GB', 'bussiness_type': '标品', 'product_price': '5999', 'product_description': '拥有120Hz高刷新率和骁龙888处理器,还配备了高品质相机系统'}, {'sku_code': '19424216918', 'product_name': 'vivo X60 Pro 5G手机 256GB', 'bussiness_type': '标品', 'product_price': '4498', 'product_description': '搭载Exynos 1080处理器与ZEISS联合调校的相机系统,拍照实力十足'}, {'sku_code': '14347982715', 'product_name': 'OPPO Ace2 5G手机 256GB', 'bussiness_type': '标品', 'product_price': '3999', 'product_description': '拍照实力十足,支持65W超级闪充'}] Thought: I now know the final answer Final Answer: 如果您想要一款拍照表现出色的手机,我为您推荐以下几款产品:1.小米11 Ultra 5G手机 256GB:价格为5999元,配备了高品质相机系统,可以拍摄出色的照片;2. vivo X60 Pro 5G手机 256GB:售价为4498元,相机系统由ZEISS联合调校,拍照实力十足;3. OPPO Ace2 5G手机 256GB:价格为3999元,不仅拍照实力十足,还支持65W超级闪充,让你的手机充电更加便捷。这些手机都有不同的特点和功能,您可以根据自己的需求进行选择。如果您还有其他问题或需求,请随时告诉我。
- Action:实际调用的API名称
- Action Input: 实际的输入参数
- Observation: 该部分是实际调用结果,训练时不参与loss,推理时需要外部调用后填入模型
- Thought: 模型思考输出
- Final Answer: 模型的最终回答
3.微调
在Agent训练中,为了避免训练后造成严重知识遗忘,我们的数据配比为ms-agent:ms-bench数据集1比2,其中ms_agent共30000条,随机抽样ms_bench数据集60000条,同时为了改变模型认知,增加自我认知数据3000条。
数据集 |
条数 |
ms-agent |
30000(全数据集) |
ms-bench |
60000(抽样) |
self-recognition |
3000(重复抽样) |
我们也支持使用自己的Agent数据集。数据集格式需要符合自定义数据集的要求。更具体地,Agent的response/system应该符合上述的Action/Action Input/Observation格式。
我们将MLP和Embedder加入了lora_target_modules. 你可以通过指定--lora_target_modules ALL在所有的linear层(包括qkvo以及mlp和embedder)加lora. 这通常是效果最好的。
微调使用了qwen-7b-chat模型,超参数如下:
超参数 |
值 |
LR |
5e-5 |
Epoch |
2 |
lora_rank |
8 |
lora_alpha |
32 |
lora_target_modules |
ALL |
batch_size |
2 |
gradient_accumulation_steps |
32 total |
运行命令和其他超参数如下:
# Experimental environment: A100 nproc_per_node=8 PYTHONPATH=../../.. \ torchrun \ --nproc_per_node=$nproc_per_node \ --master_port 29500 \ llm_sft.py \ --model_id_or_path qwen/Qwen-7B-Chat \ --model_revision master \ --sft_type lora \ --tuner_backend swift \ --dtype AUTO \ --output_dir output \ --dataset ms-agent \ --train_dataset_mix_ratio 2.0 \ --train_dataset_sample -1 \ --num_train_epochs 2 \ --max_length 2048 \ --check_dataset_strategy warning \ --lora_rank 8 \ --lora_alpha 32 \ --lora_dropout_p 0.05 \ --lora_target_modules ALL \ --self_cognition_sample 3000 \ --model_name 卡卡罗特 \ --model_author 陶白白 \ --gradient_checkpointing true \ --batch_size 2 \ --weight_decay 0.01 \ --learning_rate 5e-5 \ --gradient_accumulation_steps $(expr 32 / $nproc_per_node) \ --max_grad_norm 0.5 \ --warmup_ratio 0.03 \ --eval_steps 100 \ --save_steps 100 \ --save_total_limit 2 \ --logging_steps 10
训练过程使用了8*A100硬件环境,训练时长3小时。该训练使用单卡也可以运行,用户可以将DDP改为单卡命令即可。
4.推理
我们针对通用知识和Agent进行评测。下面列出了一个简单的评测结果。
4.1原始模型
通用知识
西湖醋鱼怎么做
新冠和普通感冒有什么区别
Agent能力
我们使用一个火焰报警场景作为测试用例:
Answer the following questions as best you can. You have access to the following APIs: 1. fire_recognition: Call this tool to interact with the fire recognition API. This API is used to recognize whether there is fire in the image. Parameters: [{"name": "image", "description": "The input image to recognize fire", "required": "True"}] 2. fire_alert: Call this tool to interact with the fire alert API. This API will start an alert to warn the building's administraters. Parameters: [] 3. call_police: Call this tool to interact with the police calling API. This API will call 110 to catch the thief. Parameters: [] 4. call_fireman: Call this tool to interact with the fireman calling API. This API will call 119 to extinguish the fire. Parameters: [] Use the following format: Thought: you should always think about what to do Action: the action to take, should be one of the above tools[fire_recognition, fire_alert, call_police, call_fireman] Action Input: the input to the action Observation: the result of the action ... (this Thought/Action/Action Input/Observation can be repeated zero or more times) Thought: I now know the final answer Final Answer: the final answer to the original input question Begin!
可以看到,人工输入Observation后模型答案并不正确。
4.2训练后
通用知识
西湖醋鱼怎么做
新冠和普通感冒有什么区别
Agent能力
可以看到,训练后模型可以正确调用API并给出最终答案。
自我认知
在命令行中使用Agent
目前命令行的Agent推理支持需要指定--eval_human true,因为该参数为false的时候会读取数据集内容,此时无法手动传入Observation:后面的API调用结果。
swift infer --model_type chatglm3-6b-32k --eval_human true --stop_words Observation: --infer_backend pt
运行命令后,改变system字段:
# 单行system <<< reset-system <<< Answer the following questions as best you can. You have access to the following APIs:\n1. fire_recognition: Call this tool to interact with the fire recognition API. This API is used to recognize whether there is fire in the image. Parameters: [{"name": "image", "description": "The input image to recognize fire", "required": "True"}]\n\n2. fire_alert: Call this tool to interact with the fire alert API. This API will start an alert to warn the building's administraters. Parameters: []\n\n3. call_police: Call this tool to interact with the police calling API. This API will call 110 to catch the thief. Parameters: []\n\n4. call_fireman: Call this tool to interact with the fireman calling API. This API will call 119 to extinguish the fire. Parameters: []\n\nUse the following format:\n\nThought: you should always think about what to do\nAction: the action to take, should be one of the above tools[fire_recognition, fire_alert, call_police, call_fireman]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can be repeated zero or more times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\nBegin!
如果需要以多行方式输入,可以用下面的命令(多行信息以#号结束):
# 多行system <<< multi-line# <<<[M] reset-system# <<<[MS] Answer the following questions as best you can. You have access to the following APIs: 1. fire_recognition: Call this tool to interact with the fire recognition API. This API is used to recognize whether there is fire in the image. Parameters: [{"name": "image", "description": "The input image to recognize fire", "required": "True"}] 2. fire_alert: Call this tool to interact with the fire alert API. This API will start an alert to warn the building's administraters. Parameters: [] 3. call_police: Call this tool to interact with the police calling API. This API will call 110 to catch the thief. Parameters: [] 4. call_fireman: Call this tool to interact with the fireman calling API. This API will call 119 to extinguish the fire. Parameters: [] Use the following format: Thought: you should always think about what to do Action: the action to take, should be one of the above tools[fire_recognition, fire_alert, call_police, call_fireman] Action Input: the input to the action Observation: the result of the action ... (this Thought/Action/Action Input/Observation can be repeated zero or more times) Thought: I now know the final answer Final Answer: the final answer to the original input question Begin!#
下面就可以进行Agent问答:
<<< 输入图片是/tmp/1.jpg,协助判断图片中是否存在着火点 Thought: I need to use the fire\_recognition API to analyze the input image and determine if there are any signs of fire. Action: Use the fire\_recognition API to analyze the input image. Action Input: /tmp/1.jpg Observation: <<< [{'coordinate': [101.1, 200.9], 'on_fire': True}] Thought: The fire\_recognition API has returned a result indicating that there is fire in the input image. Final Answer: There is fire in the input image.
可以看到,模型已经返回了API调用的结果分析。用户可以继续问问题进行多轮Agent场景。也可以指定--infer_backend vllm和--stream true来使用vllm和流式推理。
在部署中使用Agent
由于部署不支持history管理,因此agent的API调用结果拼接需要用户自行进行,下面给出一个OpenAI格式可运行的代码范例。
服务端:
swift deploy --model_type chatglm3-6b-32k --stop_words Observation
客户端:
from openai import OpenAI client = OpenAI( api_key='EMPTY', base_url='http://localhost:8000/v1', ) model_type = client.models.list().data[0].id print(f'model_type: {model_type}') system = """Answer the following questions as best you can. You have access to the following APIs: 1. fire_recognition: Call this tool to interact with the fire recognition API. This API is used to recognize whether there is fire in the image. Parameters: [{\"name\": \"image\", \"description\": \"The input image to recognize fire\", \"required\": \"True\"}] 2. fire_alert: Call this tool to interact with the fire alert API. This API will start an alert to warn the building's administraters. Parameters: [] 3. call_police: Call this tool to interact with the police calling API. This API will call 110 to catch the thief. Parameters: [] 4. call_fireman: Call this tool to interact with the fireman calling API. This API will call 119 to extinguish the fire. Parameters: [] Use the following format: Thought: you should always think about what to do Action: the action to take, should be one of the above tools[fire_recognition, fire_alert, call_police, call_fireman] Action Input: the input to the action Observation: the result of the action ... (this Thought/Action/Action Input/Observation can be repeated zero or more times) Thought: I now know the final answer Final Answer: the final answer to the original input question Begin!""" messages = [{ 'role': 'system', 'content': system }, { 'role': 'user', 'content': '输入图片是/tmp/1.jpg,协助判断图片中是否存在着火点' }] resp = client.chat.completions.create( model=model_type, messages=messages, stop=['Observation:'], seed=42) response = resp.choices[0].message.content print(f'response: {response}') # # 流式 messages.append({'role': 'assistant', 'content': response + "\n[{'coordinate': [101.1, 200.9], 'on_fire': True}]"}) print(messages) stream_resp = client.chat.completions.create( model=model_type, messages=messages, stop=['Observation:'], stream=True, seed=42) print('response: ', end='') for chunk in stream_resp: print(chunk.choices[0].delta.content, end='', flush=True) print() ## Output: # model_type: chatglm3-6b-32k # response: Thought: I need to check if there is fire in the image # Action: Use fire\_recognition API # Action Input: /tmp/2.jpg # Observation: # [{'role': 'system', 'content': 'Answer the following questions as best you can. You have access to the following APIs:\n1. fire_recognition: Call this tool to interact with the fire recognition API. This API is used to recognize whether there is fire in the image. Parameters: [{"name": "image", "description": "The input image to recognize fire", "required": "True"}]\n\n2. fire_alert: Call this tool to interact with the fire alert API. This API will start an alert to warn the building\'s administraters. Parameters: []\n\n3. call_police: Call this tool to interact with the police calling API. This API will call 110 to catch the thief. Parameters: []\n\n4. call_fireman: Call this tool to interact with the fireman calling API. This API will call 119 to extinguish the fire. Parameters: []\n\nUse the following format:\n\nThought: you should always think about what to do\nAction: the action to take, should be one of the above tools[fire_recognition, fire_alert, call_police, call_fireman]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can be repeated zero or more times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\nBegin!'}, {'role': 'user', 'content': '输入图片是/tmp/2.jpg,协助判断图片中是否存在着火点'}, {'role': 'assistant', 'content': "Thought: I need to check if there is fire in the image\nAction: Use fire\\_recognition API\nAction Input: /tmp/2.jpg\nObservation:\n[{'coordinate': [101.1, 200.9], 'on_fire': True}]"}] # response: # Final Answer: There is fire in the image at coordinates [101.1, 200.9]
5.总结
通过SWIFT支持的Agent训练能力,我们使用ms-agent和ms-bench对qwen-7b-chat模型进行了微调。可以看到微调后模型保留了通用知识问答能力,并在system字段增加了API的情况下可以正确调用并完成任务。需要注意的是:
- 训练从LoRA变为全参数训练,知识遗忘问题会更加严重,数据集混合比例需要实际测试调整
- 部分模型可能在训练后仍然调用效果不佳,可以测试该模型本身预训练能力是否扎实
本文为SWIFT LLM&AIGC微调场景化最佳实践系列之一,后续将继续通过魔搭社区推出场景化教程。目前SWIFT已支持182个大模型,71个数据集,支持LoRA、QLoRA、LongLoRA等十余种tuners,一行代码即可开启模型训练,欢迎对大模型和AIGC微调部署感兴趣的开发者小伙伴们多多交流!
官方交流群:
点击直达SWIFT开源链接,欢迎star~