详细介绍卷积神经网络(CNN)的原理 !!

简介: 详细介绍卷积神经网络(CNN)的原理 !!

前言

卷积神经网络(Convolutional Neural Network,CNN)是一种在计算机视觉领域取得了巨大成功的深度学习模型。它们的设计灵感来自于生物学中的视觉系统,旨在模拟人类视觉处理的方式。在过去几年中,CNN已经在图像识别、目标检测、图像生成和许多其他领域取得了显著的进展,成为了计算机视觉和深度学习研究的重要组成部分。


一、图像原理

在了解卷积神经网络前,我们先来看看图像的原理:

图像在计算机中是一堆按顺序排列的数字,数值为0到255。0表示最暗,255表示最亮。如下图:

上图是只有黑白颜色的灰度图,而更普遍的图片表达方式是RGB颜色模型,即红、绿、蓝三原色的色光以不同的比例相加,以产生多种多样的色光。RGB颜色模型中,单个矩阵就扩展成了有序排列的三个矩阵,也可以用三维张量去理解。

其中的每一个矩阵又叫这个图片的一个channel(通道),宽、高、深来描述。

二、为什么要学习卷积神经网络

在传统的卷积神经网络中,我们要识别下图红色框中的图像时,很可能识别不出来,因为这六张图的位置都不通,计算机无法分辨出它们其实是一种形状或物体。

传统的神经网络原理如下图:

我们希望一个物体不管在画面左侧还是右侧,都会被识别为同一物体,这一特点就是不变性。为了实现平移不变性,卷积神经网络(CNN)等深度学习模型在卷积层中使用了卷积操作,这个操作可以捕捉到图像中的局部特征而不受其他位置的影响。

三、什么是卷积

在卷积神经网络中,卷积操作是指将一个可移动的小窗口(称为数据窗口,如下图绿色矩形)与图像进行逐元素相乘然后相加的操作。这个小窗口其实是一组固定的权重,它可以被看作是一个特定的滤波器(filter)或卷积核。这个操作的名称“卷积”,源自于这种元素级相乘和求和的过程。这一操作是卷积神经网络名字的来源。

上图这个绿色小窗就是数据窗口。简而言之,卷积操作就是用一个可移动的小窗口来提取图像中的特征,这个小窗口包含了一组特定的权重,通过与图像的不同位置进行卷积操作,网络能够学习并捕捉到不同特征的信息。文字解释可能太难懂,下面直接上动图:

这张图中蓝色的框就是指一个数据窗口,红色框为卷积核(滤波器),最后得到的绿色方形就是卷积的结果(数据窗口中的数据与卷积核逐个元素相乘再求和)。

一张图带你了解卷积计算过程。

卷积需要注意哪些问题?

  1. 步长stride:每次滑动的位置步长。
  2. 卷积核的个数:决定输出的depth厚度。同时代表卷积核的个数。
  3. 填充值zero-padding:在外围边缘补充若干圈0,方便从初始位置以步长为单位可以刚好滑到末尾位置,通俗地讲就是为了总长能被步长整除。

以上图为例,那么:

  • 数据窗口每次移动两个步长取 3*3 的局部数据,即stride=2。
  • 两个神经元,即depth=2,意味着有两个滤波器。
  • zero-padding = 1

为什么要进行数据填充?

假设有一个大小为 4x4 的输入图像:

[[1, 2, 3, 4],

[5, 6, 7, 8],

[9, 10, 11, 12],

[13, 14, 15, 16]]

现在,我们要应用一个3x3的卷积核进行卷积操作,步幅(stride)为1,且要使用填充(padding)为1。如果不使用填充,卷积核的中心将无法对齐到输入图像的边缘,导致输出特征图尺寸变小。假设我们使用步幅(stride)为1进行卷积,那么在不使用填充的情况下,输出特征图的尺寸将是2x2。

所以我们要在它的周围填充一圈0,填充为 1 意味着在输入图像的周围添加一圈零值。添加填充后的图像:

[[0, 0, 0, 0, 0, 0],

[0, 1, 2, 3, 4, 0],

[0, 5, 6, 7, 8, 0],

[0, 9, 10, 11, 12, 0],

[0, 13, 14, 15, 16, 0],

[0, 0, 0, 0, 0, 0]]

现在,我们将 3x3 的卷积核应用于这个填充后的输入图像,计算卷积结果,得到大小不变的特征图。

数据填充的主要目的是确保卷积核能够覆盖输入图像的边缘区域,同时保持输出特征图的大小。这对于在CNN中保留空间信息和有效处理图像边缘信息非常重要。

卷积神经网络的模型是什么样的?

上面的红框框起来的部分便可以理解为一个滤波器,即带着一组固定权重的神经元。多个滤波器叠加便成了卷积层。

四、卷积神经网络的构造

1. 输入层

输入层接收原始图像数据。图像通常由三个颜色通道(红、绿、蓝)组成,形成一个二维矩阵,表示像素的强度值。

2. 卷积和激活

卷积层将输入图像与卷积核进行卷积操作。然后,通过应用激活函数(如ReLU)来引入非线性。这一步使网络能够学习复杂的特征。

3. 池化层

池化层通过减小特征图的大小来减少计算复杂性。它通过选择池化窗口内的最大值或平均值来实现。这有助于提取最重要的特征。

4. 多层堆叠

CNN通常由多个卷积和池化层的堆叠组成,以逐渐提取更高级别的特征。深层次的特征可以表示更复杂的模式。

5. 全连接和输出

最后,全连接层将提取的特征映射转化为网络的最终输出。这可以是一个分类标签、回归值或其他任务的结果。

形象的过程如下图:                              

展开形式

未展开形式

五、图片经过卷积后的样子

与人眼观看事物原理相似,卷积神经网络可以看到事物的轮廓。

参考:机器学习AI算法工程

目录
相关文章
|
3天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
98 55
|
13天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
88 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
17天前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
44 3
图卷积网络入门:数学基础与架构设计
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
1月前
|
机器学习/深度学习 计算机视觉 网络架构
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
纵观近年的顶会论文和研究热点,我们不得不承认一个现实:CNN相关的研究论文正在减少,曾经的"主角"似乎正逐渐淡出研究者的视野。
82 11
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
|
23天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
73 7
|
19天前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
29 1
|
26天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。

热门文章

最新文章