神经网络算法——损失函数(Loss Function)

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
简介: 神经网络算法——损失函数(Loss Function)

前言

本文将从损失函数的本质、损失函数的原理、损失函数的算法三个方面,详细介绍损失函数Loss Function

损失函数


1、损失函数的本质

(1)机器学习“三板斧”

选择模型家族,定义损失函数量化预测误差,通过优化算法找到最小损失的最优模型参数。

机器学习 VS 人类学习

  • 定义一个函数集合(模型选择)

       目标:确定一个合适的假设空间或模型家族。

       示例:线性回归、逻辑回归、神经网络、决策时等。

       考虑因素:问题的复杂性、数据的性质、计算资源等。

  • 判断函数的好坏(损失函数)

      目标:量化模型预测与真实结果之间的差异。

      示例:均方误差(MSE)用于回归;交叉熵损失用于分类。

       考虑因素:损失的性质(凸性、可微性等)、易于优化、对异常值的鲁棒性等。

  • 选择最好的函数(优化算法)

      目标:在函数集中找到最小化损失函数的模型参数。

      主要方法:梯度下降及其变种(随机梯度下降、批量梯度下降、Adam等)。

       考虑因素:收敛速度、计算效率、参数调整的复杂性等。

(2)损失函数的本质

量化模型预测与真实结果之间的差异。

损失函数的本质

  • 损失函数的概念:

       损失函数用于量化模型预测与真实值之间的差异。

       它是预测值与真实值之间差距的计算方法,并通过深度学习框架(如PyTorch、TensorFlow)进行封装。

  • 损失函数的重要性:

       在机器学习中,目标是使预测值尽可能接近真实值,因此需要通过最小化预测值和真实值之间的差异来实现。

       损失函数的选择对于模型的训练速度和效果至关重要,因为不同的损失函数会导致不同的梯度下降速度。

  • 损失函数的位置:

       损失函数位于机器学习模型的向前传播和向后传播之间。

       在向前传播阶段,模型根据输入特征生成预测值。

       损失函数接收这些预测值,并计算与真实值之间的差异。

       这个差异随后被用于向后传播阶段,以更新模型的参数并减少未来的预测误差。

损失函数的位置

2、损失函数的原理

误差反映单个数据点的预测偏差,损失则是整体数据集的预测偏差总和。损失函数运用这两者原理,聚合误差以优化模型,降低总体预测偏差。

(1)误差(Error)

对单个数据点预测结果与真实值之间的差异,用于评估模型在特定数据点上的预测准确性。

  • 定义:

       误差是指模型在对单个数据点进行预测时,其预测结果与真实值之间的差异或偏离程度。这种差异反映了模型预测的不准确性或偏差。

  • 计算:

       误差可以通过多种数学公式来计算。其中,绝对误差是预测值与真实值之间差值的绝对值,用于量化预测偏离真实值的实际大小;平方误差则是预测值与真实值之间差值的平方,常用于平方损失函数中,以便更显著地突出较大的误差。

  • 误差棒:

       误差棒通常以线条或矩形的形式出现在数据点的上方、下方或两侧,其长度或大小代表了误差的量级。这种可视化方法有助于识别潜在的问题区域,并指导进一步的模型改进或数据分析。

横轴名称

(2)损失(Loss)

损失是衡量机器学习模型在整个数据集上预测不准确性的总体指标,通过最小化损失可以优化模型参数并改进预测性能。

  • 定义:

损失是衡量机器学习模型在整个数据集上预测的总体不准确性的指标。它反映了模型预测与真实值之间的差异,并将这些差异进行聚合,以提供一个标量值来表示预测的总体不准确性

  • 计算:

       损失的具体计算是通过损失函数来完成的。损失函数接受模型的预测值和真实值作为输入,并输出一个标量值,即损失值,表示模型在整个数据集上的总体预测误差。

  • 损失曲线:

       损失曲线直观地呈现了模型在训练过程中损失值的变化趋势。通过绘制训练损失和验证损失随迭代次数的变化,我们能够洞察模型是否遭遇过拟合或欠拟合等问题,进而调整模型结构和训练策略。

损失曲线

3、损失函数的算法

损失函数的算法

(1)均方差损失函数(MSE)

通过计算模型预测值与真实值之间差值的平方的平均值,衡量回归任务中预测结果的准确性,旨在使预测值尽可能接近真实值。

均方差损失函数(MSE)

  • 应用场景:

       主要用于回归问题,即预测连续值的任务。

  • 公式:

均方差损失函数(MSE)公式

  • 特点:

       当预测值接近真实值时,损失值较小。

       当预测值与真实值差距较大时,损失值迅速增大。

       由于其梯度形式简单,易于优化。

  • 优化目标:

       最小化均方差损失,使得模型的预测值尽可能接近真实值。

(2)交叉熵损失函数(CE)

用于衡量分类任务中模型预测的概率分布与真实标签之间的差异,旨在通过最小化损失来使模型预测更加接近真实类别。

交叉熵损失函数(CE)

  • 应用场景:

       主要用于分类问题,尤其是多分类问题。

  • 公式:

交叉熵损失函数(CE)公式

  • 特点:

       当预测概率分布与真实概率分布相近时,损失值较小。

       对预测概率的微小变化非常敏感,尤其当真实标签的概率接近0或1时。

       适用于概率输出的模型,如逻辑回归、softmax分类器等。

  • 优化目标:

       最小化交叉熵损失,使得模型对每个类别的预测概率尽可能接近真实概率分布。

参考:架构师带你玩转AI

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
目录
相关文章
|
3天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
94 55
|
13天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
87 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
12天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
94 30
|
19天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
7天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
10天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
26天前
|
机器学习/深度学习 算法 关系型数据库
基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。
|
27天前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
77 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络

热门文章

最新文章