神经网络算法——反向传播 Back Propagation

简介: 神经网络算法——反向传播 Back Propagation

前言

本文将从反向传播的本质、反向传播的原理、反向传播的案例三个方面,详细介绍反向传播(Back Propagation)

反向传播


1、反向传播的本质

(1)前向传播(Forward Propagation)

前向传播是神经网络通过层级结构和参数,将输入数据逐步转换为预测结果的过程,实现输入与输出之间的复杂映射。

前向传播

  • 输入层:

       输入层接收训练集中的样本数据。

       每个样本数据包含多个特征,这些特征被传递给输入层的神经元。

       通常,还会添加一个偏置单元来辅助计算。

  • 隐藏层:

       隐藏层的每个神经元接收来自输入层神经元的信号。

       这些信号与对应的权重相乘后求和,并加上偏置。

       然后,通过激活函数(如sigmoid)处理这个求和结果,得到隐藏层的输出。

  • 输出层:

       输出层从隐藏层接收信号,并进行类似的加权求和与偏置操作。

       根据问题的类型,输出层可以直接输出这些值(回归问题),或者通过激活函数(如softmax)转换为概率分布(分类问题)。

(2)反向传播(Back Propagation)

反向传播算法利用链式法则,通过从输出层向输入层逐层计算误差梯度高效求解神经网络参数的偏导数,以实现网络参数的优化和损失函数的最小化。

反向传播

  • 利用链式法则:

       反向传播算法基于微积分中的链式法则,通过逐层计算梯度来求解神经网络中参数的偏导数。

  • 从输出层向输入层传播:

       算法从输出层开始,根据损失函数计算输出层的误差,然后将误差信息反向传播到隐藏层,逐层计算每个神经元的误差梯度。

  • 计算权重和偏置的梯度:

       利用计算得到的误差梯度,可以进一步计算每个权重和偏置参数对于损失函数的梯度

  • 参数更新:

       根据计算得到的梯度信息,使用梯度下降或其他优化算法来更新网络中的权重和偏置参数,以最小化损失函数。

2、反向传播的原理

(1)链式法则(Chain Rule)

链式法则是微积分中的一个基本定理,用于计算复合函数的导数。如果一个函数是由多个函数复合而成,那么该复合函数的导数可以通过各个简单函数导数的乘积来计算。

链式法则

  • 简化梯度计算:

       在神经网络中,损失函数通常是一个复合函数,由多个层的输出和激活函数组合而成。链式法则允许我们将这个复杂的复合函数的梯度计算分解为一系列简单的局部梯度计算,从而简化了梯度计算的过程。

  • 高效梯度计算:

       通过链式法则,我们可以从输出层开始,逐层向前计算每个参数的梯度,这种逐层计算的方式避免了重复计算,提高了梯度计算的效率。

  • 支持多层网络结构:

       链式法则不仅适用于简单的两层神经网络,还可以扩展到具有任意多层结构的深度神经网络。这使得我们能够训练和优化更加复杂的模型。

(2)偏导数

偏导数是多元函数中对单一变量求导的结果,它在神经网络反向传播中用于量化损失函数随参数变化的敏感度,从而指导参数优化。

偏导数

  • 偏导数的定义:

       偏导数是指在多元函数中,对其中一个变量求导,而将其余变量视为常数的导数。

       在神经网络中,偏导数用于量化损失函数相对于模型参数(如权重和偏置)的变化率。

  • 反向传播的目标:

       反向传播的目标是计算损失函数相对于每个参数的偏导数,以便使用优化算法(如梯度下降)来更新参数。

       这些偏导数构成了梯度,指导了参数更新的方向和幅度。

  • 计算过程:

      输出层偏导数:首先计算损失函数相对于输出层神经元输出的偏导数。这通常直接依赖于所选的损失函数。

       隐藏层偏导数:使用链式法则,将输出层的偏导数向后传播到隐藏层。对于隐藏层中的每个神经元,计算其输出相对于下一层神经元输入的偏导数,并与下一层传回的偏导数相乘,累积得到该神经元对损失函数的总偏导数。

       参数偏导数:在计算了输出层和隐藏层的偏导数之后,我们需要进一步计算损失函数相对于网络参数的偏导数,即权重和偏置的偏导数。

3、反向传播的案例:简单神经网络

(1)网络结构

  • 假设我们有一个简单的两层神经网络,结构如下:

       输入层:2个神经元(输入特征 x1 和 x2)

       隐藏层:2个神经元(带有激活函数 sigmoid)

       输出层:1个神经元(带有激活函数 sigmoid)

  • 网络的权重和偏置如下(这些值是随机初始化的,实际情况中会使用随机初始化):

       输入层到隐藏层的权重矩阵 W1:[0.5, 0.3], [0.2, 0.4]

       隐藏层到输出层的权重向量 W2:[0.6, 0.7]

       隐藏层的偏置向量 b1:[0.1, 0.2]

       输出层的偏置 b2:0.3

(2)前向传播

  • 给定输入 [0.5, 0.3],进行前向传播:

       隐藏层输入:[0.5*0.5 + 0.3*0.2 + 0.1, 0.5*0.3 + 0.3*0.4 + 0.2] = [0.31, 0.29]

       隐藏层输出(经过 sigmoid 激活函数):[sigmoid(0.31), sigmoid(0.29)] [0.57, 0.57]

       输出层输入:0.6*0.57 + 0.7*0.57 + 0.3 = 0.71

       输出层输出(预测值,经过sigmoid激活函数):sigmoid(0.71) 0.67

(3)损失计算

  • 假设真实标签是 0.8,使用均方误差(MSE)计算损失:

       损失 =

(4)反向传播

计算损失函数相对于网络参数的偏导数,并从输出层开始反向传播误差。

  • 输出层偏导数:

       损失函数对输出层输入的偏导数 :2 * (0.67 - 0.8) * sigmoid_derivative(0.71) -0.05

Sigmoid函数的导数:sigmoid(x) * (1 - sigmoid(x))

  • 隐藏层偏导数:

       损失函数对隐藏层每个神经元输出的偏导数 :[δ2 * 0.6 * sigmoid_derivative(0.31), δ2 * 0.7 * sigmoid_derivative(0.29)]

       计算后得到 δ1 ≈ [-0.01, -0.01](这里简化了计算,实际值可能有所不同)

  • 参数偏导数:

       对于权重 W2:[δ2 * 隐藏层输出1,δ2 * 隐藏层输出2] = [-0.03, -0.04]

       对于偏置 b2:δ2 = -0.05

       对于权重 W1 和 偏置 b1,需要更复杂的计算,因为它们影响到隐藏层的输出,进而影响到输出层的输入和最终的损失。这些偏导数依赖于 δ1 和输入层的值。

(5)参数更新

  • 使用梯度下降更新参数(学习率设为 0.1):

       更新 W2:w2 - 学习率 * 参数偏导数

       更新 b2:b2 - 学习率 * 参数偏导数

       同样地更新 W1 和 b1

(6)迭代

  • 重复步骤 2-5,直到网络收敛或达到预设的迭代次数。

参考:架构师带你玩转AI

目录
相关文章
|
17天前
|
机器学习/深度学习 人工智能 算法
【眼疾病识别】图像识别+深度学习技术+人工智能+卷积神经网络算法+计算机课设+Python+TensorFlow
眼疾识别系统,使用Python作为主要编程语言进行开发,基于深度学习等技术使用TensorFlow搭建ResNet50卷积神经网络算法,通过对眼疾图片4种数据集进行训练('白内障', '糖尿病性视网膜病变', '青光眼', '正常'),最终得到一个识别精确度较高的模型。然后使用Django框架开发Web网页端可视化操作界面,实现用户上传一张眼疾图片识别其名称。
52 9
【眼疾病识别】图像识别+深度学习技术+人工智能+卷积神经网络算法+计算机课设+Python+TensorFlow
|
11天前
|
机器学习/深度学习 算法 文件存储
【博士每天一篇文献-算法】 PNN网络启发的神经网络结构搜索算法Progressive neural architecture search
本文提出了一种名为渐进式神经架构搜索(Progressive Neural Architecture Search, PNAS)的方法,它使用顺序模型优化策略和替代模型来逐步搜索并优化卷积神经网络结构,从而提高了搜索效率并减少了训练成本。
20 9
|
7天前
|
算法
基于多路径路由的全局感知网络流量分配优化算法matlab仿真
本文提出一种全局感知网络流量分配优化算法,针对现代网络中多路径路由的需求,旨在均衡分配流量、减轻拥塞并提升吞吐量。算法基于网络模型G(N, M),包含N节点与M连接,并考虑K种不同优先级的流量。通过迭代调整每种流量在各路径上的分配比例,依据带宽利用率um=Σ(xm,k * dk) / cm来优化网络性能,确保高优先级流量的有效传输同时最大化利用网络资源。算法设定收敛条件以避免陷入局部最优解。
|
12天前
|
数据采集 算法 数据可视化
【优秀python算法设计】基于Python网络爬虫的今日头条新闻数据分析与热度预测模型构建的设计与实现
本文设计并实现了一个基于Python网络爬虫和机器学习模型的今日头条新闻数据分析与热度预测系统,通过数据采集、特征工程、模型构建和可视化展示,挖掘用户行为信息和内容特征,预测新闻热度,为内容推荐和舆情监控提供决策支持。
【优秀python算法设计】基于Python网络爬虫的今日头条新闻数据分析与热度预测模型构建的设计与实现
|
1月前
|
传感器 算法
基于无线传感器网络的MCKP-MMF算法matlab仿真
MCKP-MMF算法是一种启发式流量估计方法,用于寻找无线传感器网络的局部最优解。它从最小配置开始,逐步优化部分解,调整访问点的状态。算法处理访问点的动态影响半径,根据带宽需求调整,以避免拥塞。在MATLAB 2022a中进行了仿真,显示了访问点半径请求变化和代价函数随时间的演变。算法分两阶段:慢启动阶段识别瓶颈并重设半径,随后进入周期性调整阶段,追求最大最小公平性。
基于无线传感器网络的MCKP-MMF算法matlab仿真
|
19天前
|
缓存 负载均衡 算法
(四)网络编程之请求分发篇:负载均衡静态调度算法、平滑轮询加权、一致性哈希、最小活跃数算法实践!
先如今所有的技术栈中,只要一谈关于高可用、高并发处理相关的实现,必然会牵扯到集群这个话题,也就是部署多台服务器共同对外提供服务,从而做到提升系统吞吐量,优化系统的整体性能以及稳定性等目的。
|
29天前
|
传感器 机器学习/深度学习 算法
基于GA遗传算法的WSN网络节点覆盖优化matlab仿真
本研究应用遗传优化算法于无线传感器网络(WSN),优化节点布局与数量,以最小化节点使用而最大化网络覆盖率。MATLAB2022a环境下,算法通过选择、交叉与变异操作,逐步改进节点配置,最终输出收敛曲线展现覆盖率、节点数及适应度值变化。无线传感器网络覆盖优化问题通过数学建模,结合遗传算法,实现目标区域有效覆盖与网络寿命延长。算法设计中,采用二进制编码表示节点状态,适应度函数考量覆盖率与连通性,通过选择、交叉和变异策略迭代优化,直至满足终止条件。
|
27天前
|
算法
基于COPE协议的网络RLNCBR算法matlab性能仿真
摘要: 本研究聚焦于COPE协议与RLNCBR算法(MATLAB仿真),整合随机线性网络编码与背压路由,优化网络编码技术以增强吞吐量与鲁棒性。实验在MATLAB2022a下执行,展示了平均传输次数随接收节点数(N:2-10)变化趋势(P1=...=Pn=0.08,重传间隔100Δt)。COPE协议利用编码机会提高效率,而RLNCBR算法动态调整路径,减少拥塞,提升成功率。数学模型与仿真实验证实算法有效提升网络性能,降低时延与丢包率。[总计239字符]
|
1月前
|
机器学习/深度学习 算法 数据挖掘
基于改进K-means的网络数据聚类算法matlab仿真
**摘要:** K-means聚类算法分析,利用MATLAB2022a进行实现。算法基于最小化误差平方和,优点在于简单快速,适合大数据集,但易受初始值影响。文中探讨了该依赖性并通过实验展示了随机初始值对结果的敏感性。针对传统算法的局限,提出改进版解决孤点影响和K值选择问题。代码中遍历不同K值,计算距离代价,寻找最优聚类数。最终应用改进后的K-means进行聚类分析。
|
1月前
|
机器学习/深度学习 数据采集 监控
算法金 | DL 骚操作扫盲,神经网络设计与选择、参数初始化与优化、学习率调整与正则化、Loss Function、Bad Gradient
**神经网络与AI学习概览** - 探讨神经网络设计,包括MLP、RNN、CNN,激活函数如ReLU,以及隐藏层设计,强调网络结构与任务匹配。 - 参数初始化与优化涉及Xavier/He初始化,权重和偏置初始化,优化算法如SGD、Adam,针对不同场景选择。 - 学习率调整与正则化,如动态学习率、L1/L2正则化、早停法和Dropout,以改善训练和泛化。
19 0
算法金 | DL 骚操作扫盲,神经网络设计与选择、参数初始化与优化、学习率调整与正则化、Loss Function、Bad Gradient

热门文章

最新文章