神经网络算法 —— 一文搞懂Transformer !!

简介: 神经网络算法 —— 一文搞懂Transformer !!

前言

本文将从 Transformer的本质、Transformer的原理 和 Transformer架构改进三个方面,搞懂Transformer。


一、Transformer的本质

1. Transformer架构

主要由输入部分(输入输出嵌入与位置编码)、多层编码器、多层解码器以及输出部分(输出线性层与Softmax)四大部分组成。

Transformer架构

(1)输入部分

  • 源文本嵌入层:将源文本中的词汇数字表示转换为向量表示,捕捉词汇间的关系。
  • 位置编码层:为输入序列的每个位置生成位置向量,以便模型能够理解序列中的位置信息。
  • 目标文本嵌入层(在解码器中使用):将目标文本中的词汇数字表示转换为向量表示。

(2)编码器部分

  • 由N个编码器层堆叠而成。
  • 每个编码器层由两个子层连接结构组成:第一个子层是多头自注意力子层,第二个子层是一个前馈全连接子层。每个子层后都接有一个规范化层和一个残差连接。

(3)解码器部分

  • 由N个解码器层堆叠而成。
  • 每个解码器层由三个子层连接结构组成:第一个子层是一个带掩码的多头自注意力子层,第二个子层是一个多头注意力子层(编码器到解码器),第三个子层是一个前馈全连接层。每个子层后都接有一个规范化层和一个残差连接。

(4)输出部分

  • 线性层:将解码器输出的向量转换为最终的输出维度。
  • Softmax层:将线性层的输出转换为概率分布,以便进行最终的预测。

2. Encoder-Decoder(编码器-解码器)

左边是N个编码器,右边是N个解码器,Transformer中的N为6

Encoder-Decoder (编码器-解码器)

(1)Encoder 编码器

  • Transformer中的编码器部分一共6个相同的编码器层组成。
  • 每个编码器层都有两个子层,即多头自注意力层(Multi-Head Attention)层和逐位置的前馈神经网络(Position-wise Feed-Forward Network)。在每个子层后面都有残差连接(图中的虚线)和层归一化(LayerNorm)操作,二者合起来称为 Add&Norm 操作。

Encoder(编码器)架构

(2)Decoder 解码器

Transformer中的解码器部分同样有6个相同的解码器层组成。

每个解码器层都有三个子层,掩码自注意力层(Masked Self-Attention)、Encoder-Decoder自注意力层、逐位置的前馈神经网络。同样,在每个子层后面都有残差连接(图中的虚线)和层归一化(LayerNorm)操作,二者合起来称为 Add&Norm操作。

Decoder(解码器)架构

二、Transformer的原理

Transformer工作原理

1. Multi-Head Attention(多头自注意力)

它允许模型同时关注来自不同位置的信息。通过分割原始的输入向量到多个头(head),每个头都能独立地学习不同的注意力权重,从而增强模型对输入序列中的不同部分的关注能力。

Multi-Head Attention(多头自注意力)

(1)输入线性变换

对于输入的Query(查询)、Key(键)和Value(值)向量,首先通过线性变换将它们映射到不同的子空间。这些线性变换的参数是模型需要学习的。

(2)分割多头

经过线性变换后,Query、Key和Value向量被分割成多个头。每个头部都会独立地进行注意力计算。

(3)缩放点积注意力

在每个头内部,使用缩放点积注意力来计算Query和Key之间的注意力分数。这个分数决定了在生成输出时,模型应该关注Value向量的部分。

(4)注意力权重应用

将计算出的注意力权重应用于Value向量,得到加权的中间输出。这个过程可以理解为根据注意力权重对输入信息进行筛选和聚焦。

(5)拼接和线性变换

将所有头的加权输出拼接在一起,然后通过一个线性变换得到最终的Multi-Head Attention输出。

2. Scaled Dot-Product Attention(缩放点积注意力)

它是Transformer模型中的多头注意力机制的一个关键组成部分。

Scaled Dot-Product Attention(缩放点积注意力)

(1)Query、Key和Value矩阵

Query矩阵(Q):表示当前的关注点或信息需求,用于与Key矩阵进行匹配。

Key矩阵(K):包含输入序列中各个位置的标识信息,用于被Query矩阵查询匹配。

Value矩阵(V):存储了与Key矩阵相对应的实际值或信息内容,当Query与某个Key匹配时,相应的Value将被用来计算输出。

(2)点积计算

通过计算Query矩阵和Key矩阵之间的点积(即对应元素相乘后求和),来衡量Query与每个Key之间的相似度或匹配程度。

(3)缩放因子

由于点积操作的结果可能非常大,尤其是在输入维度较高的情况下,这可能导致softmax函数在计算注意力权重时进入饱和区。为了避免这个问题,缩放点积注意力引入了一个缩放因子,通常是输入维度的平方根。点积结果除以这个缩放因子,可以使得softmax函数的输入保持在一个合理的范围内。

(4)Softmax函数

将缩放后的点积结果输入到softmax函数中,计算每个Key相对于Query的注意力权重。Softmax函数将原始得分转换为概率分布,使得所有的Key的注意力权重之和为1。

(5)加权求和

使用计算出的注意力权重对Value矩阵进行加权求和,得到最终的输出。这个过程根据注意力权重的大小,将更多的关注放在与Query更匹配的Value上。

三、Transformer架构改进

1. BERT

BERT 是一种基于Transformer的预训练语言模型,它的最大创新之处在于引入了 双向Transformer编码器 ,这使得模型可以同时考虑输入序列的前后上下文信息。

BERT架构

(1)输入层(Embedding)

Token Embeddings:将单词或字词转换为固定维度的向量。

Segment Embeddings:用于区分句子对中的不同句子。

Position Embeddings:由于Transformer模型本身不具备处理序列顺序的能力,所有需要加入位置嵌入来提供序列中单词的位置信息。

(2)编码层(Transformer Encoder)

BERT模型使用双向Transformer编码器进行编码。

(3)输出层(Pre-trained Task-specific Layers)

MLM输出层:用于预测被掩码(masked)的单词。在训练阶段,模型会随机遮盖输入序列中的部分单词,并尝试根据上下文预测这些单词。

NSP输出层:用于判断两个句子是否为连续的句子对。在训练阶段,模型会接收成对的句子作为输入,并尝试预测第二个句子是否是第一个句子的后续句子。

2. GPT

GPT 也是一种基于Transformer的预训练语言模型,它的最大创新之处在于使用了 单向Transformer编码器,这使得模型可以更好地捕捉输入序列的上下文信息。

(1)输入层(Input Embedding)

将输入的单词或符号转换为固定维度的向量表示。

可以包括词嵌入、位置嵌入等,以提供单词的语义信息和位置信息。

(2)编码层(Transformer Encoder)

GPT模型使用单向Transformer编码器进行编码和生成。

(3)输出层(Output Linear and Softmax)

线性输出层将最后一个Transformer Decoder Block的输出转换为词汇表大小的向量。

Softmax函数将输出向量转换为概率分布,以便进行词汇选择或生成下一个单词。

来源:架构师带你玩转AI

目录
相关文章
|
17天前
|
机器学习/深度学习 人工智能 算法
【眼疾病识别】图像识别+深度学习技术+人工智能+卷积神经网络算法+计算机课设+Python+TensorFlow
眼疾识别系统,使用Python作为主要编程语言进行开发,基于深度学习等技术使用TensorFlow搭建ResNet50卷积神经网络算法,通过对眼疾图片4种数据集进行训练('白内障', '糖尿病性视网膜病变', '青光眼', '正常'),最终得到一个识别精确度较高的模型。然后使用Django框架开发Web网页端可视化操作界面,实现用户上传一张眼疾图片识别其名称。
52 9
【眼疾病识别】图像识别+深度学习技术+人工智能+卷积神经网络算法+计算机课设+Python+TensorFlow
|
11天前
|
机器学习/深度学习 算法 文件存储
【博士每天一篇文献-算法】 PNN网络启发的神经网络结构搜索算法Progressive neural architecture search
本文提出了一种名为渐进式神经架构搜索(Progressive Neural Architecture Search, PNAS)的方法,它使用顺序模型优化策略和替代模型来逐步搜索并优化卷积神经网络结构,从而提高了搜索效率并减少了训练成本。
20 9
|
7天前
|
算法
基于多路径路由的全局感知网络流量分配优化算法matlab仿真
本文提出一种全局感知网络流量分配优化算法,针对现代网络中多路径路由的需求,旨在均衡分配流量、减轻拥塞并提升吞吐量。算法基于网络模型G(N, M),包含N节点与M连接,并考虑K种不同优先级的流量。通过迭代调整每种流量在各路径上的分配比例,依据带宽利用率um=Σ(xm,k * dk) / cm来优化网络性能,确保高优先级流量的有效传输同时最大化利用网络资源。算法设定收敛条件以避免陷入局部最优解。
|
12天前
|
数据采集 算法 数据可视化
【优秀python算法设计】基于Python网络爬虫的今日头条新闻数据分析与热度预测模型构建的设计与实现
本文设计并实现了一个基于Python网络爬虫和机器学习模型的今日头条新闻数据分析与热度预测系统,通过数据采集、特征工程、模型构建和可视化展示,挖掘用户行为信息和内容特征,预测新闻热度,为内容推荐和舆情监控提供决策支持。
【优秀python算法设计】基于Python网络爬虫的今日头条新闻数据分析与热度预测模型构建的设计与实现
|
1月前
|
传感器 算法
基于无线传感器网络的MCKP-MMF算法matlab仿真
MCKP-MMF算法是一种启发式流量估计方法,用于寻找无线传感器网络的局部最优解。它从最小配置开始,逐步优化部分解,调整访问点的状态。算法处理访问点的动态影响半径,根据带宽需求调整,以避免拥塞。在MATLAB 2022a中进行了仿真,显示了访问点半径请求变化和代价函数随时间的演变。算法分两阶段:慢启动阶段识别瓶颈并重设半径,随后进入周期性调整阶段,追求最大最小公平性。
基于无线传感器网络的MCKP-MMF算法matlab仿真
|
17天前
|
机器学习/深度学习 自然语言处理 并行计算
【深度学习+面经】Transformer 网络学习笔记
Transformer模型的核心概念、优缺点以及在多个领域的应用,并提供了针对Transformer架构的面试问题及答案。
34 2
|
20天前
|
缓存 负载均衡 算法
(四)网络编程之请求分发篇:负载均衡静态调度算法、平滑轮询加权、一致性哈希、最小活跃数算法实践!
先如今所有的技术栈中,只要一谈关于高可用、高并发处理相关的实现,必然会牵扯到集群这个话题,也就是部署多台服务器共同对外提供服务,从而做到提升系统吞吐量,优化系统的整体性能以及稳定性等目的。
|
27天前
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv8改进- Backbone主干】BoTNet:基于Transformer,结合自注意力机制和卷积神经网络的骨干网络
【YOLOv8改进- Backbone主干】BoTNet:基于Transformer,结合自注意力机制和卷积神经网络的骨干网络
|
29天前
|
传感器 机器学习/深度学习 算法
基于GA遗传算法的WSN网络节点覆盖优化matlab仿真
本研究应用遗传优化算法于无线传感器网络(WSN),优化节点布局与数量,以最小化节点使用而最大化网络覆盖率。MATLAB2022a环境下,算法通过选择、交叉与变异操作,逐步改进节点配置,最终输出收敛曲线展现覆盖率、节点数及适应度值变化。无线传感器网络覆盖优化问题通过数学建模,结合遗传算法,实现目标区域有效覆盖与网络寿命延长。算法设计中,采用二进制编码表示节点状态,适应度函数考量覆盖率与连通性,通过选择、交叉和变异策略迭代优化,直至满足终止条件。
|
27天前
|
算法
基于COPE协议的网络RLNCBR算法matlab性能仿真
摘要: 本研究聚焦于COPE协议与RLNCBR算法(MATLAB仿真),整合随机线性网络编码与背压路由,优化网络编码技术以增强吞吐量与鲁棒性。实验在MATLAB2022a下执行,展示了平均传输次数随接收节点数(N:2-10)变化趋势(P1=...=Pn=0.08,重传间隔100Δt)。COPE协议利用编码机会提高效率,而RLNCBR算法动态调整路径,减少拥塞,提升成功率。数学模型与仿真实验证实算法有效提升网络性能,降低时延与丢包率。[总计239字符]

热门文章

最新文章