启动多个jar包来监听同一个数据库的binlog

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 【2月更文挑战第27天】启动多个jar包来监听同一个数据库的binlog

如果你需要启动多个jar包来监听同一个数据库的binlog,并做不同的业务处理,你可以按照以下步骤进行配置:

  1. 在每个jar包中添加Flink CDC Connector依赖。例如,在pom.xml文件中添加如下依赖:
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-debezium_2.11</artifactId>
    <version>${flink.version}</version>
</dependency>

其中,${flink.version}是Flink的版本号。

  1. 在每个jar包中配置Flink CDC Connector参数。你需要指定要监听的数据库连接信息、要捕获的表名和过滤条件等参数。例如,在application.properties文件中添加如下配置:
# 数据库连接信息
db.url=jdbc:mysql://localhost:3306/test?useUnicode=true&characterEncoding=utf8&serverTimezone=Asia/Shanghai
db.user=root
db.password=123456

# Flink CDC Connector参数
table.name=my_table
startup.mode=latest-offset
topic.prefix=my_topic

其中,db.url是数据库连接地址,db.userdb.password分别是数据库用户名和密码,table.name是要监听的表名,startup.mode是启动模式(可选值为earliest-offset或latest-offset),topic.prefix是生成的Kafka主题的前缀。

  1. 在每个jar包中编写业务逻辑代码。你可以根据不同的业务需求编写不同的代码逻辑,并将结果输出到Kafka或其他消息队列中。例如,在Main类中添加如下代码:
public static void main(String[] args) throws Exception {
   
    // 创建Flink流执行环境
    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    // 创建Flink CDC Source
    FlinkCDCSource<RowData> source = new FlinkCDCSource<>(...); // 省略构造函数参数
    // 将数据流转换为Java对象流,并进行业务处理
    DataStream<MyBusinessObject> businessStream = source.getOutput().map(new MyMapFunction());
    // 将结果输出到Kafka或其他消息队列中
    businessStream.addSink(...); // 省略Sink实现类和参数
    // 执行Flink作业
    env.execute("My Flink CDC Job");
}

其中,MyBusinessObject是你的业务对象类型,MyMapFunction是你的业务处理函数。你需要根据实际情况编写相应的代码逻辑。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
3月前
|
canal 缓存 NoSQL
Redis缓存与数据库如何保证一致性?同步删除+延时双删+异步监听+多重保障方案
根据对一致性的要求程度,提出多种解决方案:同步删除、同步删除+可靠消息、延时双删、异步监听+可靠消息、多重保障方案
Redis缓存与数据库如何保证一致性?同步删除+延时双删+异步监听+多重保障方案
|
4月前
|
SQL 关系型数据库 MySQL
【揭秘】MySQL binlog日志与GTID:如何让数据库备份恢复变得轻松简单?
【8月更文挑战第22天】MySQL的binlog日志记录数据变更,用于恢复、复制和点恢复;GTID为每笔事务分配唯一ID,简化复制和恢复流程。开启binlog和GTID后,可通过`mysqldump`进行逻辑备份,包含binlog位置信息,或用`xtrabackup`做物理备份。恢复时,使用`mysql`命令执行备份文件,或通过`innobackupex`恢复物理备份。GTID模式下的主从复制配置更简便。
555 2
|
3天前
|
SQL 关系型数据库 MySQL
数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog
《数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog》介绍了如何利用MySQL的二进制日志(Binlog)恢复误删除的数据。主要内容包括: 1. **启用二进制日志**:在`my.cnf`中配置`log-bin`并重启MySQL服务。 2. **查看二进制日志文件**:使用`SHOW VARIABLES LIKE &#39;log_%&#39;;`和`SHOW MASTER STATUS;`命令获取当前日志文件及位置。 3. **创建数据备份**:确保在恢复前已有备份,以防意外。 4. **导出二进制日志为SQL语句**:使用`mysqlbinlog`
22 2
|
1月前
|
SQL Java 数据库连接
canal-starter 监听解析 storeValue 不一样,同样的sql 一个在mybatis执行 一个在数据库操作,导致解析不出正确对象
canal-starter 监听解析 storeValue 不一样,同样的sql 一个在mybatis执行 一个在数据库操作,导致解析不出正确对象
|
5月前
|
关系型数据库 MySQL Java
|
5月前
|
Oracle 关系型数据库 Java
实时计算 Flink版产品使用问题之如何启动多个jar包来监听同一个数据库的binlog,并针对不同的业务进行处理
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
Java
[JarEditor]可直接修改jar包的IDEA插件
### 修改JAR包变得更简单:JarEditor插件简介 **背景:** 开发中常需修改JAR包中的class文件,传统方法耗时费力。JarEditor插件让你一键编辑JAR包内文件,无需解压。 **插件使用:** 1. **安装:** 在IDEA插件市场搜索JarEditor并安装。 2. **修改class:** 打开JAR文件中的class,直接编辑,保存后一键构建更新JAR。 3. **文件管理:** 右键菜单支持在JAR内新增/删除/重命名文件等操作。 4. **搜索:** 使用内置搜索功能快速定位JAR包内的字符串。
554 2
[JarEditor]可直接修改jar包的IDEA插件
|
5月前
|
弹性计算 Java Serverless
Serverless 应用引擎操作报错合集之上传自定义JAR包,启动时报错,是什么导致的
Serverless 应用引擎(SAE)是阿里云提供的Serverless PaaS平台,支持Spring Cloud、Dubbo、HSF等主流微服务框架,简化应用的部署、运维和弹性伸缩。在使用SAE过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
|
5月前
|
关系型数据库 Java 分布式数据库
PolarDB产品使用问题之部署到服务器上的Java应用(以jar包形式运行)无法连接,如何解决
PolarDB产品使用合集涵盖了从创建与管理、数据管理、性能优化与诊断、安全与合规到生态与集成、运维与支持等全方位的功能和服务,旨在帮助企业轻松构建高可用、高性能且易于管理的数据库环境,满足不同业务场景的需求。用户可以通过阿里云控制台、API、SDK等方式便捷地使用这些功能,实现数据库的高效运维与持续优化。